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Abstract The natural vibrations of thin (Kirchhoff-Love) plates with constant and variable thickness and 
interaction with water are considered in the paper. The influence of the water free surface on natural 
frequencies of the coupled water-plate system is analysed too. The Finite Element Method (FEM) and the 
Finite Difference Method (FDM) are used to describe structural deformation and the Boundary Element 
Method (BEM) is applied to describe the dynamic interaction of water on a plate surface. The plate inertia 
forces are expressed by diagonal or consistent mass matrix. The water inertia forces are described by fully-
populated mass matrix which is obtained directly from the theory of double layer potential.  
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1. Introduction  

The dynamic analysis of structures is a very wide spectrum of scientific research and the available literature 
is very wide. A series of studies on the influence of the adjoined air mass on natural vibration of thin surfaces 
were done by e.g. Jones and Moore [1], Kwak [2], Sygulski [3], [4], Fu and Price [5] as well as Liang et al. [6] 
or Lee and Lee [7]. The influence of variable plate stiffness on its dynamic characteristics was analyzed by 
Nerantzaki and Katsikadelis [8] in terms of the coupled Boundary Element Method (BEM) and the Analog 
Equation Method (AEM) problem formulation. Rakowski and Guminiak [9] presented non-linear vibrations 
of thick (Timoshenko) beams using the Finite Element Method (FEM) combined with the Finite Difference 
Method (FDM). Guminiak and Sygulski [10] presented natural vibrations of thin plates partially and totally 
submerged in water using the fully BEM approach coupled with the modified formulation of plate boundary 
conditions. Lenartowicz and Guminiak [11] analyzed plate-water dynamic interaction in terms of FEM-BEM 
and FDM-BEM. Kamiński [12], [13] presented plate eigenvibrations using stochastic perturbation approach. 

Present work includes the free vibration analysis of rectangular thin (Kirchhoff-Love) plates with 
constant and linearly variable thickness partially and totally submerged in water. In assumption water is 
treated as inviscid and incompressible medium with resting on the plate and makes no separate flow 
resulting from this plate vibration. The presence of the fluid is manifested by means of the fully-populated 
fluid mass matrix which is adjoined to the plate mass matrix.. 

2. Description of thin plate deformation in terms of the Finite Element Method and the Finite 
Difference Method 

The free vibration problem of the structure can be described by generalized eigenvalue problem, which 
can be written in matrix notation as follows: 

(𝐊 − 𝜔2𝐌) 𝐰 = 𝟎 (1) 

where K and M are the stiffness and mass matrices of the structure respectively, ω is the natural frequency 
(eigenvalue) of the structure and w is the non-zero vector of dynamic degrees of freedom (eigenvector). 
Bending of a plate with the constant thickness is described by a rectangular four-node finite element with 
three degrees of freedom at each node. At each element ith node, in the Cartesian coordinate system, there 
are introduced: deflection wi and two angles of rotation in mutually perpendicular directions – φix and φiy 

respectively, wherein the function of deflection can be expressed as the polynomial of the fourth order [14] 
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𝑤(𝑥, 𝑦) = 𝛼1 + 𝛼2𝑥 + 𝛼3𝑦 + 𝛼4𝑥2 + 𝛼5𝑥𝑦 + 𝛼6𝑦2 + 𝛼7𝑥3 + 

+𝛼8𝑥2𝑦 + 𝛼9𝑥𝑦2 + 𝛼10𝑦3 + 𝛼11𝑦𝑥3 + 𝛼12𝑥𝑦3 
(2) 

where 𝛼11 ≠ 0 or 𝛼12 ≠ 0. The detailed description of the considered finite element is presented by Kuczma 
[13] and was quoted by Lenartowicz and Guminiak [11]. 

The free vibrations of isotropic thin plate with variable thickness can be described by the following 
differential equation [8] 
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where𝐷 = 𝐷(𝑥, 𝑦) is the thin plate stiffness and 𝑏(𝑥, 𝑦, 𝑡) is the continuous set of inertia forces. It is assumed 
that the plate thickness varies linearly along one coordinate x and is continuous and smooth function, that 
is ( )xhh = . The differential equation (3) can be replaced by the difference equation which have the character 

of an amplitude equation: 
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where the operators 
∆𝑛

∆𝑥𝑛 (… ) and 
∆𝑛

∆𝑦𝑛 (… ) indicates the central difference of the 𝑛-th order of the function of 

two variables 𝑥 and 𝑦. The central differences used in formula (4) are approximations of derivatives of 
functions 𝑤(𝑥, 𝑦) and 𝐷(𝑥) established at selected points belonging to the plate domain. ( )yxBB ,=  states 

the set of inertia forces acting in nodes and is expressed per unit of sub-domain yx . The difference 

operators are created for each internal central point (𝑖, 𝑗) = (𝑥𝑖 , 𝑦𝑗) using the set of  thirteen points with 

regular arrangement (see Fig. 1) according to [15]. 
 

 

Fig. 1. The set of the finite difference points dividing the plate area [11]. 

The difference procedures lead to the following matrix equation which has the character of the 
generalized eigenvalue problem 

(𝚫 − 𝜔2𝐌) 𝐰 = 𝟎 (5) 

where M is a diagonal matrix containing plate masses mi which are concentrated in subsequent FDM mesh 
nodes, divided by their surface area. 

3. Liquid medium as the source of additional inertia forces 

At the beginning, let it be assumed that a plate is fully immersed in a fluid and vibrates at small deflection 
amplitudes and there is no separation of the liquid from the plate. Starting from the potential theory and 
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building the potential of the double layer the relation between the amplitudes of displacements and the 
amplitudes of hydrodynamic pressure will be obtained e.g. [10, 11] 

𝜔2𝑤̃(𝑥𝑚, 𝑦𝑚) = −
1
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2
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𝑟
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 (6) 

where 𝜌f is the fluid density. Above relation (6) can be re-written in matrix notation 

−4𝜋𝜌f𝜔
2𝐰̃ = 𝐇 𝐩̃ (7) 

Each element of the matrix H is defined as follows 

𝐻𝑚𝑛 = ∫
𝜕2

𝜕𝑧𝑚
2

[
1

𝑟
]

𝑆𝑛

 𝑑𝑆𝑛
𝑧→0

 (8) 

which can be evaluated analytically (see Fig. 2) according to the following formula: 
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Fig. 2. Designations of rectangular sub-domain for the fluid [10, 11] 

Now, let it be assumed, that the same plate is submerged in fluid vertically or horizontally (see Fig. 3). 
 

 

Fig. 3. The fluid mass matrix considering the fluid free surface for plate submerged in water  
a) vertically and b) horizontally [10]. 

The liquid free surface can be defined by the liquid hydrodynamic pressure zero vector 𝑝𝑛 or the liquid 
velocity zero vector vn in normal direction to its surface as Fu and Price [6]. For the first case (𝑝𝑛 = 0) the 
condition of the liquid free surface can be introduced by following replacement in the equation (8) 

1 𝑟⁄ = 1 𝑟(P, Q)⁄ − 1 𝑟(P,Q')⁄  (10) 

and for the second case (𝑣𝑛 = 0) the replacement  is expressed 

1 𝑟⁄ = 1 𝑟(P, Q)⁄ + 1 𝑟(P,Q')⁄  (11) 

For a plate horizontally submerged in a fluid, should be taken into account non-zero vertical parameter 

z occurring in the integral (8) i.e. that 𝑟 = √𝑥2 + 𝑦2 + 𝑧2. The relation (10) corresponds more closely to the 
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presence of a free surface, and the relation (11) can be assigned when the plate is located near the bottom 
of the container. 

Given the boundary of the fluid medium defined by relations (10) or (11), the matrix H will be 
constructed as follows 

𝐇 = 𝐇(P, Q) − 𝐇(P,Q') (12) 

𝐇 = 𝐇(P, Q) + 𝐇(P,Q') (13) 

Only matrices defined by relations (12) or (13) can be inverted to obtain a fluid mass matrix considering 
the barrier of liquid medium 

𝐌f = 4𝜋𝜌f𝐒𝐇−1 (14) 

wherein the vector of hydrodynamic forces acting on a plate can be specified by the relation 

𝐏 = −𝐌f𝜔
2𝐰 (15) 

where 𝑃𝑛 = 𝛥𝑝𝑛 𝑆𝑛,𝑺 = diag(𝑆1. . . 𝑆𝑁) collects values of areas of the individual sub-domains and N is the 
number of them. 

Finally the mass matrix of the fluid-plate system 𝐌pf is the sum of the consistent  

or lumped (diagonal) plate mass matrix and fully-populated fluid mass matrix [10], [11]. 

𝐌pf = 𝐌p + 𝐌f (16) 

The relation (16) informs that the whole problem comes to the construction of the fully- 
-populated fluid mass matrix which is coupled to the mass matrix of the plate. 

4. Numerical examples 

In the examples presented below, the natural frequencies of selected plate types are determined. Plates are 
submerged a) vertically or b) horizontally (see Fig. 4). The water free surface is assumed to be defined by 
the liquid velocity zero vector (𝑣𝑛 = 0). 
 

 

Fig. 4. A square cantilever plate submerged in water a) vertically and b) horizontally. 

Example 1. The square cantilever steel plate of dimensions 10.0 m × 10.0 m and thickness 0.238 m is 
vertically submerged in water. The part of the plate domain immersed in water is divided into the set of 
regular sub-domains with the number: 400 for the fully immersed plate (s/l = 1), 300 for s/l = 0.75, 200 for 
s/l = 0.5 and 100 for s/l = 0.25. Natural frequencies for the plate obtained using FEM-BEM and FDM-BEM 
formulation with (I) and without (II) consideration of the free water surface are presented in Table 1 and 
Table 2 respectively with the use of a 21×21 FEM mesh and 40×40 FDM grid. 

Tab. 1. Natural frequencies for the plate vertically immersed in water. 

FEM-BEM present solution – natural frequencies ω [rad/s] 

s/l
 

0.25
 

0.5 0.75 1.0 
Mode (I) (II) (I) (II) (I) (II) (I) (II) 

1 9.777 9.591 7.868 7.888 7.451 7.364 7.340 7.257 
2 25.587 25.180 21.824 21.644 20.749 20.584 20.530 20.446 
3 71.647 77.442 63.742 63.210 52.713 51.939 49.342 48.818 
4 85.565 84.679 74.746 74.135 69.768 69.373 68.861 68.700 
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Tab. 2.  Natural frequencies for the plate vertically immersed in water. 

FDM-BEM present solution – natural frequencies ω [rad/s] 

s/l
 

0.25
 

0.5 0.75 1.0 
Mode (I) (II) (I) (II) (I) (II) (I) (II) 

1 10.029 9.664 7.792 7.940 7.700 7.410 7.638 7.301 
2 28.003 27.070 23.380 23.089 22.911 21.855 22.553 21.692 
3 72.058 71.280 64.889 63.019 52.647 51.873 47.489 48.769 
4 90.147 87.758 78.029 76.294 74.196 70.852 72.697 70.037 

 
The results for different FDM grids (24×24 and 32×32) are shown below in Tabs. 2a and 2b respectively.  

Tab. 2a. Natural frequencies for the plate vertically immersed in water. 

FDM-BEM present solution – natural frequencies ω [rad/s] for 24×24 FDM grid 

s/l
 

0.25
 

0.5 0.75 1.0 
Mode (I) (II) (I) (II) (I) (II) (I) (II) 

1 10.121 9.467 7.958 7.799 7.577 7.295 7.415 7.192 
2 29.215 27.535 24.163 23.360 23.159 22.073 22.638 21.909 
3 71.009 70.492 64.456 61.699 50.881 50.812 47.794 47.945 
4 92.077 88.025 79.034 76.049 73.705 70.386 71.805 69.544 

Tab. 2b. Natural frequencies for the plate vertically immersed in water. 

FDM-BEM present solution – natural frequencies ω [rad/s] for 32×32 FDM grid 
s/l

 
0.25

 
0.5 0.75 1.0 

Mode (I) (II) (I) (II) (I) (II) (I) (II) 
1 9.809 9.588 8.474 7.886 7.711 7.366 7.187 7.259 
2 28.043 27.244 24.842 23.192 23.127 21.938 21.967 21.775 
3 70.791 70.984 62.152 62.516 51.370 51.474 51.472 48.461 
4 89.9611 87.841 80.311 76.191 74.291 70.665 70.826 69.839 

 
The numerical tests results are compared with the analytical [6] and BEM [10] results taking into 

account the effect of the free water surface, which are listed in the Table 3. Four first modes of vibrations 
for both plates fully submerged in water are shown in the Fig. 5. 

Tab. 3. Natural frequencies for the plate vertically immersed in water [6], [10] 

Analytical [6] and BEM [10] solution – natural frequencies ω [rad/s] 

s/l
 

0.25
 

0.5 0.75 1.0 
Mode [6] [10] [6] [10] [6] [10] [6] [10] 

1 10.25 9.99 8.22 8.16 7.57 7.50 7.35 7.31 
2 26.40 25.61 21.85 21.83 20.50 20.55 20.20 20.30 
3 73.26 71.84 64.40 64.36 54.65 53.53 50.45 49.44 
4 87.10 85.82 76.68 75.39 71.52 69.81 70.41 68.80 

 
 
 

                

Fig. 5. Modes of vibration of the clamped isotropic plate fully immersed in fluid [11]. 

Example 2. The square cantilever isotropic plate of the constant thickness is horizontally submerged in 
water. The plate material properties and the geometry are the same as in the Example 1. Water sub-domains 
with the number 400 are used while FEM mesh and FDM grid are the same as in the Example 1. The results 
of calculations are presented in Table 4 and compared to analytical solutions [6]. 
 

 

1st 2nd 3rd 4th 
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Tab. 4. Natural frequencies for the plate submerged horizontally in water 

Mode 
Solution – natural frequencies ω [rad/s] 

FEM-BEM – present FDM-BEM – present Analytical [6] 

s/l 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 
1 7.961 7.467 7.337 8.014 7.514 7.382 8.04 7.51 7.35 
2 21.586 20.616 20.482 22.929 21.877 21.731 21.54 20.34 20.19 
3 52.307 49.564 49.053 52.239 49.508 49.001 53.23 50.83 50.11 
4 71.411 68.971 68.751 72.896 70.329 70.093 72.20 70.81 69.50 

 
The results for different FDM grids (24×24 and 32×32) are shown below in Tab. 4a. 

Tab. 4a. Natural frequencies for the plate submerged horizontally in water 

Mode 
Solution – natural frequencies ω [rad/s] 

FDM-BEM – present 
(24×24 FDM grid) 

FDM-BEM – present 
(32×32 FDM grid) Analytical [6] 

s/l 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 
1 7.922 7.411 7.276 7.978 7.474 7.342 8.04 7.51 7.35 
2 23.247 22.112 21.952 23.049 21.966 21.815 21.54 20.34 20.19 
3 51.452 48.688 48.179 51.944 49.202 48.694 53.23 50.83 50.11 
4 72.592 69.857 69.603 72.769 70.139 69.896 72.20 70.81 69.50 

 
Example 3. The square cantilever isotropic plate of the linearly variable thickness is considered (see Fig. 6) 
and vertically submerged in water. The manner of submerging the plate is shown in the Fig. 4. The 
immersion effect on natural frequencies for h = 0.238 m and H = 2h  is presented in Table 5. The FDM grid 
of dimensions 40×40 is used. 
 

 

Fig. 6. The square clamped plate with linearly variable thickness. 

Obtained natural frequencies for two different plate thickness values at its fixed edge and for different FDM 
grid dimensions respectively are presented in Table 6 taking into account the effect of the free water 
surface. The modes of vibrations are similar to those presented in Example 2. 

Tab. 5.  Natural frequencies for the plate vertically immersed in water. 

FDM-BEM present solution – natural frequencies ω [rad/s] 

s/l
 

0.25
 

0.5 0.75 1.0 
Mode (I) (II) (I) (II) (I) (II) (I) (II) 

1 20.373 19.700 16.444 16.747 16.384 15.897 16.296 15.727 
2 38.969 37.755 33.687 33.457 33.387 32.408 33.027 32.295 
3 104.989 102.493 95.285 94.064 90.369 89.018 86.029 87.186 
4 134.328 132.568 120.357 117.340 106.189 103.781 102.425 101.403 

Tab. 6.  Natural frequencies for the plate obtained using different grid dimensions. 

Mode 
Solution FDM-BEM present solution – natural frequencies ω [rad/s] 

H = 2h  and s/l = 0.75 H = 3h and s/l = 0.75 
16 × 16 24 × 24 32 × 32 40 × 40 16 × 16 24 × 24 32 × 32 40 × 40 

1 15.502 16.101 16.377 16.384 23.639 24.486 24.888 24.935 
2 43.907 34.183 33.796 33.387 47.579 45.780 44.979 44.351 
3 88.324 88.031 89.077 90.369 119.378 119.039 119.448 119.751 
4 108.914 106.252 105.984 106.189 152.708 148.030 148.136 149.398 
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5. Conclusions  

The linear theory of natural vibrations of thin rectangular isotropic plates considering interaction with 
water has been presented in the paper. To describe the plate deformation the Finite Element Method (FEM) 
and the Finite Difference Method (FDM) were applied for plates with constant and variable thickness 
respectively. The numerical tests carried out in the paper showed that the deeper the plate is immersed in 
the water, the lower its natural frequencies become. This proves the significant influence of the adjoined 
mass on the dynamics of the plate. The calculations for plates with constant thickness presented in the paper 
showed that both the FEM and FDM methods used allow to obtain similar results. In addition, doubling the 
thickness of the plate at its fixed edge approximately doubled its first natural frequency. The combined 
BEM-FDM approach results are closer to the analytical solutions than the FEM-BEM combined methodology 
results. Numerical convergence studies carried out for a plate with variable thickness showed that starting 
from a 24×24 grid, the results obtained began to approach each other. 
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