PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphology and selected properties of kenaf fiber/cornhusk reinforced corn starch hybrid biocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Struktura i wybrane właściwości hybrydowych biokompozytów skrobi kukurydzianej wzmocnionej włóknem kenaf i włóknem z łusek kukurydzy
Języki publikacji
EN
Abstrakty
EN
The study examined the effect of the cornhusk fibers (CHF) content on the structure, physical, mechanical and water barrier properties of composites obtained on the basis of corn starch (CS) and kenaf fiber (KF), used in the amount of 6 wt%. Sorbitol in the amount of 30 wt% was used as a plasticizer. Hybrid biocomposite films were obtained using the solution casting technique. The addition of CHF reduced the water absorption and solubility of the film in water. Increasing the CHF content in the composite resulted in greater film thickness, weight and density. Thanks to good biocompatibility (FESEM) the composites showed higher tensile strength and Young’s modulus. However, elongation at break was lower. FTIR results confirmed the intermolecular hydrogen bonding between the matrix and the fibers. The best properties were obtained at 6 wt% CHF content.
PL
W pracy zbadano wpływ zawartości włókien z łusek kukurydzy (CHF) na strukturę, właściwości fizyczne, mechaniczne i barierowe dla wody kompozytów otrzymanych na bazie skrobi kukurydzianej (CS) i włókna kenaf (KF), stosowanego w ilości 6% mas. Jako plastyfikator użyto sorbitol w ilości 30% mas. Folie biokompozytów hybrydowych otrzymywano techniką odlewania z roztworu. Dodatek CHF zmniejszał absorpcję wody i rozpuszczalność folii w wodzie. Zwiększenie zawartości CHF w kompozycie skutkowało większą grubością, gramaturą i gęstością folii. Dzięki dobrej biozgodności (FESEM) kompozyty wykazały większą wytrzymałość na rozciąganie oraz moduł Younga. Jednak wydłużenie przy zerwaniu było mniejsze. Wyniki FTIR potwierdziły obecność międzycząsteczkowych wiązań wodorowych między osnową polimerową i włóknami. Najlepsze właściwości uzyskano przy zawartości 6% mas. CHF.
Czasopismo
Rocznik
Strony
575--587
Opis fizyczny
Bibliogr. 80 poz., rys., tab., wykr.
Twórcy
autor
  • Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
autor
  • Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
  • Centre for Advance Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
  • Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • Advanced Lightning Power and Energy Research (ALPER), Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
Bibliografia
  • [1] PlasticsEurope. Plastics - the Facts 2022. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/
  • [2] Schmaltz E., Melvin E.C., Diana Z. et al.: Environment International 2020, 144, 106067. https://doi.org/10.1016/j.envint.2020.106067
  • [3] https://www.unep.org/resources/report/single-use-plastics-roadmap-sustainability (access date 5.06.2018).
  • [4] Harussani M.M., Sapuan S.M., Rashid U. et al.: Science of The Total Environment 2022, 803, 149911. https://doi.org/10.1016/j.scitotenv.2021.149911
  • [5] Hazrol M.D., Sapuan S.M., Zuhri M.Y.M. et al.: Design for Sustainability 2021, 329. https://doi.org/10.1016/B978-0-12-819482-9.00007-1
  • [6] Tarique J, Sapuan SM, Khalina A.: Scientific Report 2021, 11, 13900. https://doi.org/10.1038/s41598-021-93094-y
  • [7] Nurazzi N.M., Harussani M.M., Aisyah H.A. et al.: Functional Composites and Structures 2021, 3, 024002. https://doi.org/10.1088/2631-6331/abff36
  • [8] Chen S., Wu M., Wang C. et al.: Polymers 2020, 12, 1780. https://doi.org/10.3390/polym12081780.
  • [9] Sherwani S.F.K., Sapuan S.M., Leman Z. et al.: Biocomposite and Synthetic Composites for Automotive Applications 2021, 401. https://doi.org/10.1016/B978-0-12-820559-4.00015-8
  • [10] Ilyas R.A., Sapuan S.M., Asyraf M.R.M. et al.: “Biofiller-Reinforced Biodegradable Polymer Composites”, Taylor and Francis Group, France 2020, p. 23.
  • [11] Harussani M.M., Sapuan S.M., Rashid U., Khalina A. et al.: Polymers 2021, 13, 1707. https://doi.org/10.3390/polym13111707
  • [12] Syafiq R., Sapuan S.M., Zuhri M.Y.M. et al.: Polymers 2020, 12, 2403. https://doi.org/10.3390/polym12102403
  • [13] Ilyas R.A., Sapuan S.M., Atiqah A. et al.: Polymer Composites 2020, 41, 459. https://doi.org/10.1002/pc.25379
  • [14] Edhirej A., Sapuan S.M., Jawaid M., Zahari N.I.: Fibers Polymer 2017, 18, 162. https://doi.org/10.1007/s12221-017-6251-7
  • [15] Sapuan S.M., Ilyas R.A., Ishak M.R. et al.: “Development of Sugar Palm-Based Products: A Community Project. Sugar Palm Biofibers”, Biopolym. Biocomposites. 1st ed., 1st edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018, p. 245–66. https://doi.org/10.1201/9780429443923-12
  • [16] Sanyang M.L., Ilyas R.A., Sapuan S.M., Jumaidin R.: Bionanocomposites for Packaging Applications 2018, 125. https://doi.org/10.1007/978-3-319-67319-6_7
  • [17] Hazrol M.D., Sapuan S.M., Ilyas R.A. et al. Polimery 2020, 65, 363. https://doi.org/10.14314/polimery.2020.5.4
  • [18] Ibrahim M.I.J., Sapuan S.M., Zainudin E.S., Zuhri M.Y.M.: Journal of Materials Research and Technology 2020, 9, 200. https://doi.org/10.1016/j.jmrt.2019.10.045
  • [19] Abral H., Ariksa J., Mahardika M.N et al.: Food Hydrocolloids 2020, 98, 105266. https://doi.org/10.1016/j.foodhyd.2019.105266
  • [20] Aghaei S., Karimi Alavijeh M., Shafiei M. et al.: Biomass and Bioenergy 2022, 161, 106447. https://doi.org/10.1016/j.biombioe.2022.106447
  • [21] https://www.celignis.com/feedstock.php?value=27 (access date 5.09.2022).
  • [22] Ren J., Dang K., Pollet E., Avérous L.: Polymers 2018, 10, 808. https://doi.org/10.3390/polym10080808
  • [23] Hazrati K.Z., Sapuan S.M., Zuhri M.Y.M., Jumaidin R.: Journal of Materials Research and Technology 2021, 15, 1342. https://doi.org/10.1016/j.jmrt.2021.09.003
  • [24] Sanyang M.L., Sapuan S.M., Jawaid M. et al.: International Journal of Polymer Analysis and Characterization 2015, 20, 627. https://doi.org/10.1080/1023666X.2015.1054107
  • [25] Hazrol M.D., Sapuan S.M., Zainudin E.S. et al.: Polymers 2022, 14, 1590. https://doi.org/10.3390/polym14081590
  • [26] Shojaee-Aliabadi S., Hosseini H., Mohammadifar M.A. et al.: International Journal of Biological Macromolecules 2013, 52, 116. https://doi.org/10.1016/j.ijbiomac.2012.08.026
  • [27] Lomelí Ramírez M.G., Satyanarayana K.G., Iwakiri S., de Muniz G.B. et al.: Carbohydrate Polymers 2011, 86, 1712. https://doi.org/10.1016/j.carbpol.2011.07.002
  • [28] Sahari J., Sapuan S.M., Zainudin E.S. et al.: Procedia Chemistry 2012, 4, 254. https://doi.org/10.1016/j.proche.2012.06.035
  • [29] ASTM D882-02. ASTM International. Stand Test Method Tensile Prop Thin Plast Sheeting 2002.
  • [30] Sheltami R.M., Abdullah I., Ahmad I. et al.: Carbohydrate Polymers 2012, 88, 772. https://doi.org/10.1016/j.carbpol.2012.01.062
  • [31] Versino F., García M.A.: Industrial Crops and Products 2014, 58, 305. https://doi.org/10.1016/j.indcrop.2014.04.040
  • [32] Sanyang M.L., Sapuan S.M., Jawaid M. et al.: BioResources 2016, 11, 4134. https://doi.org/10.15376/biores.11.2.4134-4145
  • [33] Jumaidin R., Sapuan S.M., Jawaid M. et al.: International Journal of Biological Macromolecules 2017, 97, 606. https://doi.org/10.1016/j.ijbiomac.2017.01.079
  • [34] Hazrati K.Z., Sapuan S.M., Zuhri M.Y.M., Jumaidin R.: International Journal of Biological Macromolecules 2021, 185, 219. https://doi.org/10.1016/j.ijbiomac.2021.06.099
  • [35] Tarique J., Zainudin E.S., Sapuan S.M. et al.: Polymers 2022, 14, 388. https://doi.org/10.3390/polym14030388
  • [36] Jawaid M., Khalil H.P.S.A.: Carbohydrate Polymers 2015, 86, 1. https://doi.org/10.1016/j.carbpol.2011.04.043
  • [37] Ilyas R.A., Sapuan S.M., Ishak M.R.: Carbohydrate Polymers 2018, 181, 1038. https://doi.org/10.1016/j.carbpol.2017.11.045
  • [38] P. Ramesh, B. Durga Prasad KLN.: Characterization of kenaf/aloevera fiber reinforced PLA-hybrid biocomposite” 2020.
  • [39] Ilyas R.A., Sapuan S.M., Ibrahim R. et al.: Journal of Biobased Materials and Bioenergy 2020, 14, 234. https://doi.org/10.1166/jbmb.2020.1951
  • [40] Sanyang M., Sapuan S., Jawaid M. et al.: Polymers 2015, 7, 1106. https://doi.org/10.3390/polym7061106
  • [41] Bodur M.S., Englund K., Bakkal M.: Journal of Applied Polymer Science 2017, 134, 45506. https://doi.org/10.1002/app.45506
  • [42] Rosa M.F., Chiou B., Medeiros E.S. et al.: Bioresource Technology 2009, 100, 5196. https://doi.org/10.1016/j.biortech.2009.03.085
  • [43] Saravanakumar S.S., Kumaravel A., Nagarajan T.: Carbohydrate Polymers 2013, 92, 1928. https://doi.org/10.1016/j.carbpol.2012.11.064
  • [44] Arthanarieswaran V.P., Kumaravel A., Saravanakumar S.S.: International Journal of Polymer Analysis and Characterization 2015, 20, 367. https://doi.org/10.1080/1023666X.2015.1018737
  • [45] Paraginski R.T., Vanier N.L., Moomand K. et al.: Carbohydrate Polymers 2014, 102, 88. https://doi.org/10.1016/j.carbpol.2013.11.019.
  • [46] Tarique J., Sapuan S.M., Khalina A.: Journal of Natural Fibers 2021, 19(15), 9914. https://doi.org/10.1080/15440478.2021.1993418
  • [47] Ibrahim M.I.J., Sapuan S.M., Zainudin E.S., Zuhri M.Y.M.: International Journal of Biological Macromolecules 2019, 139, 596. https://doi.org/10.1016/j.ijbiomac.2019.08.015
  • [48] Saba N., Safwan A., Sanyang M.L. International Journal of Biological Macromolecules 2017, 102, 822. https://doi.org/10.1016/j.ijbiomac.2017.04.074.
  • [49] Sanyang M.L., Sapuan S.M., Jawaid M. et al.: Journal of Food Science and Technology 2016, 53, 326. https://doi.org/10.1007/s13197-015-2009-7
  • [50] Zuo X., Zhang M., He E., Zhang P.: Ceramics International 2018, 44, 5319. https://doi.org/10.1016/j.ceramint.2017.12.150
  • [51] Zuo X., Zhang M., He E., Guan B. et al.: Journal of Alloys and Compounds 2017, 726, 1040. https://doi.org/10.1016/j.jallcom.2017.08.077
  • [52] Zhong Y., Li Y.: Starch 2014, 66, 524. https://doi.org/10.1002/star.201300202
  • [53] Faruk O., Bledzki A.K., Fink H.-P., Sain M.: Progress in Polymer Science 2012, 37, 552. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  • [54] Hazrol M.D., Sapuan S.M., Zainudin E.S. Polymers 2021, 13, 1. https://doi.org/10.3390/polym13020242
  • [55] Zainuddin S.Y.Z., Ahmad I., Kargarzadeh H. et al.: Carbohydrate Polymers 2013, 92, 2299. https://doi.org/10.1016/j.carbpol.2012.11.106
  • [56] Nordin N., Othman S.H., Rashid S.A., Basha R.K.: Food Hydrocolloids 2020, 106, 105884. https://doi.org/10.1016/j.foodhyd.2020.105884
  • [57] Galindez A., Daza L.D., Homez-Jara A. et al.: Carbohydrate Polymers 2019, 215, 143. https://doi.org/10.1016/j.carbpol.2019.03.074
  • [58] Cerqueira M.A., Souza B.W.S., Teixeira J.A., Vicente A.A.: Food Hydrocolloids 2012, 27, 175. https://doi.org/10.1016/j.foodhyd.2011.07.007
  • [59] Jafarzadeh S., Alias A.K., Ariffin F., Mahmud S.: International Journal of Food Properties 2018, 21, 983. https://doi.org/10.1080/10942912.2018.1474056
  • [60] Ili Balqis A.M., Nor Khaizura M.A.R., Russly A.R., Nur Hanani Z.A.: International Journal of Biological Macromolecules 2017, 103, 721. https://doi.org/10.1016/j.ijbiomac.2017.05.105
  • [61] Edhirej A., Sapuan S.M., Jawaid M., Zahari N.I. Starch 2017, 69, 1. https://doi.org/10.1002/star.201500366
  • [62] Nazrin A., Sapuan S.M., Zuhri M.Y.M.: Fronteries in Chemistry 2020, 8. https://doi.org/10.3389/fchem.2020.00213
  • [63] Prachayawarakorn J., Limsiriwong N., Kongjindamunee R., Surakit S.: Journal of Polymers and the Environment 2012, 20, 88. https://doi.org/10.1007/s10924-011-0371-8
  • [64] Kizil R., Irudayaraj J., Seetharaman K.: Journal Agricultural and Food Chemistry 2002, 50, 3912. https://doi.org/10.1021/jf011652p
  • [65] Kaewtatip K., Thongmee J.: Materials and Design 2013, 49, 701. https://doi.org/10.1016/j.matdes.2013.02.010
  • [66] Wu Y., Geng F., Chang P.R. et al.: Carbohydrate Polymers 2009, 76, 299. https://doi.org/10.1016/j.carbpol.2008.10.031
  • [67] Ilyas R.A., Sapuan S.M., Atikah M.S.N. et al.: ResearchGate 2019, 243. https://doi.org/10.13140/RG.2.2.22062.25926
  • [68] Fahma F., Iwamoto S., Hori N. et al.: Cellulose 2011, 18, 443. https://doi.org/10.1007/s10570-010-9480-0
  • [69] Sukyai P., Sriroth K.R., Lee B.H. et al.: Applied Mechanics and Materials 2011, 117-119, 1343. https://doi.org/10.4028/www.scientific.net/AMM.117-119.1343
  • [70] Müller C.M.O., Laurindo J.B., Yamashita F.: Carbohydrate Polymers 2009, 77, 293. https://doi.org/10.1016/j.carbpol.2008.12.030
  • [71] Ilyas R.A., Sapuan S.M., Ishak M.R. et al.: International Journal of Biological Macromolecules 2019, 123, 379. https://doi.org/10.1016/j.ijbiomac.2018.11.124
  • [72] Salaberria A.M., Labidi J., Fernandes S.C.M.: Chemical Engineering Journal 2014, 256, 356. https://doi.org/10.1016/j.cej.2014.07.009
  • [73] Nishino T., Hirao K., Kotera M. et al.: Composites Science and Technology 2003, 63, 1281. https://doi.org/10.1016/S0266-3538(03)00099-X
  • [74] Zampaloni M., Pourboghrat F., Yankovich S.A. et al.: Composites Part A: Applied Science and Manufacturing 2007, 38, 1569. https://doi.org/10.1016/j.compositesa.2007.01.001
  • [75] Nazrin A., Sapuan S.M., Zuhri M.Y.M. et al.: Nanotechnology Reviews 2021, 10, 431. https://doi.org/10.1515/ntrev-2021-0033
  • [76] Ilyas R.A., Sapuan S.M., Kadier A. et al.: Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers 2020, 89. https://doi.org/10.1016/B978-0-12-819661-8.00007-X
  • [77] Liu W., Drzal L.T., Mohanty A.K., Misra M.: Composites Part B: Engineering 2007, 38, 352. https://doi.org/10.1016/j.compositesb.2006.05.003
  • [78] Liu W., Jawerth L.M., Sparks E.A. et al.: Science 2006, 313, 634. https://doi.org/10.1126/science.1127317
  • [79] Zavareze E. da R., Pinto V.Z., Klein B. et al.: Food Chemistry 2012, 132, 344. https://doi.org/10.1016/j.foodchem.2011.10.090
  • [80] Xu J., Andrews T.D., Shi Y.: Starch 2020, 72, 1900238. https://doi.org/10.1002/star.201900238
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c8b3439-e662-40a5-8535-a917a424cd09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.