PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Commercial sponges in heterogeneous catalysis: developing novel composites with cobalt and silver

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of commercial sponges in materials science has gained much recent attention. Their unique properties, namely a fibrous, rigid skeleton, thermal stability and resistance to acid and basic hydrolysis, have been the primary motivation to use them in the development of new composites. In this work, a simple method of immobilization of cobalt and silver cations, followed by their reduction using sodium borohydride, was successfully applied for the first time to obtain functionalized spongin scaffolds. Three different materials, labeled Co_spongin, Ag_spongin and Co-Ag_spongin, were prepared. Their morphological and physicochemical properties were explored using various techniques (SEM+EDS, TG/DTA, FTIR). The focal point of the research was the application of the resulting materials in the reaction of 4-nitrophenol reduction with sodium borohydride in water. It was found that all of the composites possess superior activity in the reduction of 4-nitrophenol, achieving high rate constants of 0.31 min-1 for Ag_spongin, 0.52 min-1 for Co_spongin and 0.86 min-1 for Co-Ag_spongin. Reusability tests showed that all of the composites could be reused five times. Additional structural analysis after catalytic application showed no visible changes in the morphology of the catalysts. The results indicate that spongin can be considered as a facile, cost-effective, renewable and environmentally friendly three-dimensional support for use in heterogeneous catalysis.
Słowa kluczowe
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., wz.
Twórcy
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
  • Institute of Material Engineering, Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Jana Pawla II 24, PL-60965 Poznan, Poland
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
Bibliografia
  • AI, L., JING, J., 2013. Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresource Technol. 132, 374-377.
  • ALLAEDINI, G., ABUBAKAR, M., 2013. Study of influential factors in synthesis and characterization of cobalt oxide nanoparticles. J. Nanostruct. Chem. 3(77), 1-16.
  • BOURY-ESNAULT, N., LAVROV, D.V., RUIZ, C.A., PÉREZ, T., 2013. The integrative taxonomic approach applied to porifera: a case study of the Homoscleromorpha. Integr. Comp. Biol. 53(3), 416-427.
  • CHI, Y., WANG, M., LI, X., ZHANO, Z., 2014. One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 423, 54-59.
  • EHRLICH, H., HANKE, T., MEISSNER, H., BORN, R., SCHARNWEBER, D., WORCH, H., 2003. Spongins: nanostructural investigations and development of biominimetic material model. VDI Berichte 1803, 287-290.
  • GAO, Y., DING, X., ZHENG, Z., CHENG, X., PENG, Y., 2007. Template-free method to prepare polymer nanocapsules embedded with noble metal nanoparticles. Chem. Comm. 36, 3720-3722.
  • GARCIA, E.M., SANTOS, J.S., PEREIRA, E.C., FREITAS, M.B.J.G., 2008. Electrodeposition of cobalt from spent li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique. J. Power Sources 185(1), 549-553.
  • GARRON, A., ŚWIERCZYŃSKI, D., BENNICI, S., AUROUX, A., 2009. New insights into the mechanism of H2 generation through NaBH4 hydrolysis on Co-based nanocatalysts studied by differential reaction calorimetry. Int. J. Hydrog. Eng. 34(3), 1185-1199.
  • GREEN, D., HOWARD, D., YANG, X., KELLY, M., OREFFO, R.O.C., 2003. Natural marine sponge fiber skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. Tissue Eng. 9(6), 1159- 1166.
  • GUO, J., WU, H., LIAO, X., SHI, B., 2011. Facile synthesis of size-controlled silver nanoparticles using plant tannin grafted collagen fiber as reductant and stabilizer for microwave absorption application in the whole ku band. J. Phys. Chem. C 115(48), 23688-23694.
  • HANS, M., SALIMA, M., MÜCKLICH, F., SOLIOZ, M., 2016. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 11(1), 1-8.
  • HUANG, X., WU, D., CHENG, D., 2017. Porous Co2P nanowires as high efficient bifunctional catalysts for 4-nitrophenol reduction and sodium borohydride hydrolysis. J. Colloid Interface Sci. 507, 429-436.
  • JESIONOWSKI, T., NORMAN, M., ŻÓŁTOWSKA-AKSAMITOWSKA, S., PETRENKO, I., JOSEPH, Y., EHRLICH, H., 2018. Marine spongin: naturally prefabricated 3D scaffold-based biomaterial. Mar. Drugs 16(3), 1-23.
  • KURODA, K., TAMAO, I., HARUTA, M., 2009. Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J. Mol. Catal. A Chem. 298(1-2), 7-11.
  • LIU, W., YANG, X., HUANG, W., 2006. Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids. J. Colloid Interface Sci. 304(1), 160-165.
  • LIU, W., YANG, X., XIE, L., 2007. Size-controlled gold nanocolloids on polymer microsphere-stabilizer via interaction between functional groups and gold nanocolloids. J. Colloid Interface Sci. 313(2), 494-502.
  • MANDAL, A., MEDA, W., ZHANG, W.J., FARHAN, K.M., GNANAMANI, A., 2012. Synthesis, characterization and comparison of antimicrobial activity of PEG/TritonX-100 capped silver nanoparticles on collagen scaffold. Colloids Surf B Biointerfaces 90(1), 191-196.
  • NOH, J., MEIJBOOM, R., 2014. Reduction of 4-nitrophenol as a model reaction for nanocatalysis. In Application of Nanotechnology in Water Research, ed. Mishra. AK., Scrivener Publishing LLC, Boston, USA.
  • NORMAN, M., BARTCZAK, P., ZDARTA, J., EHRLICH, H., JESIONOWSKI, T., 2016b. Anthocyanin dye conjugated with Hippospongia communis marine demosponge skeleton and its antiradical activity. Dyes Pigm. 134, 541-552.
  • NORMAN, M., ZDARTA, J., BARTCZAK, P., PIASECKI, A., PETRENKO, I., EHRLICH, H., JESIONOWSKI, T., 2016c. Marine sponge skeleton photosensitized by copper phthalocyanine: a catalyst for Rhodamine B degradation. Open Chem. 14(1), 243-254.
  • NORMAN, M., BARTCZAK, P., ZDARTA, J., TOMALA, W., ŻURAŃSKA, B., DOBROWOLSKA, A., PIASECKI, A., CZACZYK, K., EHRLICH, H., JESIONOWSKI, T., 2016a. Sodium copper chlorophyllin immobilization onto Hippospongia communis marine demosponge skeleton and its antibacterial activity. Int. J. Mol. Sci. 17(10), 1564.
  • NORMAN, M., ŻÓŁTOWSKA-AKSAMITOWSKA, S., ZGOŁA-GRZEŚKOWIAK, A., EHRLICH, H., JESIONOWSKI, T., 2018. Iron(III) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A. J. Hazard. Mater. 347, 78-88.
  • PALLELA, R., BOJJA, S., RAO, J.W., 2011. Biochemical and biophysical characterization of collagens of marine sponge, Ircinia fusca (Porifera: Demospongiae: Irciniidae). Int. J. Biol. Macromol. 49(1), 85-92.
  • PETRENKO, I., SUMMERS, A.P., SIMON, P., ŻÓŁTOWSKA-AKSAMITOWSKA, S., MOTYLENKO, M., SCHIMPF, K., RAFAJA, D., ROTH, F., KUMMER, K., BRENDLER, E., POKROVSKY, P.S., GALLI, R., WYSOKOWSKI, M., MEISSNER, H., NIEDERSCHLAG, E., JOSEPH, Y., MOLODTSOV, S., ERESKOVSKY, A., SIVKOV, V., NEKIPELOV, S., PETROVA, O., VOLKOVA, O., BERTAU, M., KRAFT, M., ROGALEV, A., KOPANI, M., JESIONOWSKI, T., EHRLICH, H., 2019. Extreme Biomimetics: preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges. Sci. Adv. 5(10), 1-12.
  • PICH, A., KARAK, A., LU, Y., GHOSH, A.K., ADLER, H-J.P., 2006. Tuneable catalytic properties of hybrid microgels containing gold nanoparticles. J. Nanosci. Nanotechnol. 6(12), 3763-3769.
  • SHARMA, A., DUTTA, R.K., ROYCHOWDHURY, A., DAS, D., GOYAL, A., KAPOOR, A., 2017. Cobalt doped CuO nanoparticles as a highly efficient heterogeneous catalyst for reduction of 4-nitrophenol to 4-aminophenol. Appl. Catal. A Gen. 543, 257-265.
  • SZATKOWSKI, T., JESIONOWSKI, T., 2017. Hydrothermal synthesis of spongin-based materials. In Extreme Biomimetics, ed. Ehrlich, H., Springer Nature, Cham, Switzerland, 251-274.
  • SZATKOWSKI, T., WYSOKOWSKI, M., LOTA, G., PĘZIAK, D., BAZHENOV, V.V., NOWACZYK, G., WALTER, J., MOLODTSOV, S.L., STOCKER, H., HIMCINSCHI, C., PETRENKO, I., STELLING, A.L., JURGA, S., JESIONOWSKI, T., EHRLICH, H., 2015. Novel nanostructured hematite-spongin composite developed using an Extreme Biomimetic approach. RSC Adv. 5(96), 79031-79040.
  • SZATKOWSKI, T., SIWIŃSKA-STEFAŃSKA, K., WYSOKOWSKI, M., STELLING, A.L., JOSEPH, Y., EHRLICH, H., JESIONOWSKI, T., 2017. Immobilization of titanium(IV) oxide onto 3D spongin scaffolds of marine sponge origin according to Extreme Biomimetics principles for removal of C.I. Basic Blue 9. Biomimetics 2(2), 1-14.
  • SZATKOWSKI, T., KOPCZYŃSKI, K., MOTYLENKO, M., BORMANN, H., MANIA, B., GRAŚ, M., LOTA, G., BAZHENOV, V.V., RAFAJA, D., ROTH, D., WEISE, J., LANGER, E., WYSOKOWSKI, M., ŻÓŁTOWSKA-AKSAMITOWSKA, S., PETRENKO, I., MOLODTSOV, S.L., HUBALKOVA, J., ANEZIRIS, C.G., JOSEPH, Y., STELLING, A.L., EHRLICH, H., JESIONOWSKI, T., 2018. Extreme Biomimetics: a carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV) and its electrochemical applications. Nano Res. 11(8), 4199-4214.
  • WU, H., HUANG, X., GAO, M., LIAO, X., SHI, B., 2011. Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction. Green Chem. 13(3), 651-658.
  • ZDARTA, J., NORMAN, M., SMUŁEK, W., MOSZYŃSKI, D., KACZOREK, E., STELLING, A.L., EHRLICH, H., JESIONOWSKI, T., 2017. Spongin-based scaffolds from Hippospongia communis demosponge as an effective support for lipase immobilization. Catalysts 7(5), 147, 1-20.
Uwagi
The work was supported by the National Science Centre, Poland, project Etiuda no. 2019/32/T/ST8/00414, and by the Ministry of Science and Higher Education of Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c895db2-4f97-40c4-98d2-0deb6e6fc15d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.