PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial intelligence applications in brand management

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This research explores the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in brand management. It aims to understand how AI technologies can optimize brand awareness, enhance personalized communication, and improve brand equity measurement, thereby redefining brand management strategies in the digital era. Design/methodology/approach: A systematic literature review was conducted, analyzing research studies published between 2014 and 2024. The methodology focused on articles that delve into the integration of AI and ML within brand management contexts. This approach was chosen to consolidate and synthesize a broad spectrum of findings on AI’s impact on brand management practices. Findings: The review identified significant enhancements in brand management facilitated by AI, particularly in consumer engagement and customization of consumer interactions through data-driven insights. AI's capability to analyze big data has enabled more precise consumer segmentation and targeting, thereby influencing brand loyalty and overall brand equity positively. Research limitations/implications: The primary limitation of this study is its reliance on data from articles indexed only in Scopus, potentially omitting relevant studies published in other languages or databases. Future research should expand the scope to include these sources and explore empirical validations of the proposed theoretical impacts of AI on brand management. Practical implications: This research highlights the practical applications of AI in improving brand management strategies, offering insights into effective AI integration into marketing practices. Businesses are encouraged to adopt AI-driven tools for better market segmentation, consumer behavior predictions, and enhanced customer relationship management. Social implications: The findings could influence public attitudes towards brand interaction by fostering greater acceptance of AI in consumer relations. The research supports enhanced corporate social responsibility through AI's ability to provide more targeted and meaningful consumer interactions. Originality/value: This paper contributes to the academic and practical understanding of AI’s role in brand management by synthesizing existing research and identifying future research directions. It is valuable to academicians, marketing professionals, and policymakers interested in the implications of AI technology in brand strategies.
Rocznik
Tom
Strony
153--170
Opis fizyczny
Bibliogr. 43 poz.
Bibliografia
  • 1. Aguerrebere, P.M., Medina, E., Pacanowski, T.G. (2024). Building smart brands through online and artificial intelligence tools: A quantitative analysis about the best hospitals in Spain. Online Journal of Communication and Media Technologies, 14(1). https://doi.org/10.30935/ojcmt/14132
  • 2. Badea (Stroie), L.M. (2014). Predicting Consumer Behavior with Artificial Neural Networks. Procedia Economics and Finance, 15, 238-246. https://doi.org/10.1016/S2212- 5671(14)00492-4
  • 3. Bhatia, R., Gupta, A., Vimalkumar, M., Sharma, D. (2023). Factors affecting consumer brand sabotage virality: A study of an Indian brand #boycott. Information Systems and e-Business Management. https://doi.org/10.1007/s10257-023-00628-0
  • 4. Çakar, T., Filiz, G. (2023). Unraveling neural pathways of political engagement: Bridging neuromarketing and political science for understanding voter behavior and political leader perception. Frontiers in Human Neuroscience, 17. https://doi.org/10.3389/fnhum. 2023.1293173
  • 5. Ceide, C.F., Ruiz, M.J.U., Álvarez, M.V. (2023). Employer activity in public television in the age of automation: Employer branding, recruitment channels, selection processes, skills, and professional profiles in demand. Estudios Sobre el Mensaje Periodístico, 29(4), 855- 868. https://doi.org/10.5209/esmp.88582
  • 6. Chen, Y.-P., Nelson, L.D., Hsu, M. (2015). From "Where" to "What": Distributed representations of brand associations in the human brain. Journal of Marketing Research, 52(4), 453-466. https://doi.org/10.1509/jmr.14.0606
  • 7. Chernev, A. (2020). Strategic Brand Management. Cerebellum Press.
  • 8. Cui, L., Zhang, X., Qin, A.K., Sellis, T., Wu, L. (2017). CDS: Collaborative distant supervision for Twitter account classification. Expert Systems with Applications, 83, 94-103.
  • 9. Dabirian, A., Kietzmann, J., Diba, H. (2017). A great place to work!? Understanding crowdsourced employer branding. Business Horizons, 60(2), 197-205. https://doi.org/10.1016/j.bushor.2016.11.005
  • 10. Dalvi, D.S. (2021). Employer brand equity and its impact on the application intent of the prospective employees. International Journal of Business Intelligence Research (IJBIR), 12(1). DOI: 10.4018/IJBIR.20210101.oa1
  • 11. Das, M., Myrden, S. (2021). America's major league soccer: Artificial intelligence and the quest to become a world class league. The CASE Journal, 17(2), 202-225. https://doi.org/10.1108/TCJ-10-2020-0140
  • 12. De Mauro, A., Sestino, A. Bacconi, A. (2022). Machine learning and artificial intelligence use in marketing: a general taxonomy. Ital. J. Mark., 439-457. https://doi.org/ 10.1007/s43039-022-00057-w
  • 13. Durga, P., Godavarthi, D. (2024). Review on Evaluation of Different Models for Classifying Sentiments from Twitter: Challenges and Applications. International Journal of Intelligent Systems And Applications In Engineering IJISAE, 12(1), 235-266.
  • 14. Gutuleac, R., Baima, G., Rizzo, C. (2023). The rise of virtual influencers: Bizarrely realistic or scarily uncanny? In: Rediscovering local roots and interactions in management (pp. 171- 176). Bari, Italy: Sinergie-SIMA Management Conference Proceedings.
  • 15. Haleem, A., Javaid, M., Qadri, M.A., Singh, R.P., Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119-132.
  • 16. Holster, J. (2024). Semantic Topic Modeler. OpenAI.
  • 17. Iansiti, M., Lakhani, K.R. (2020). Competing in the Age of AI - How machine intelligence changes the rules of business. Harvard Business Review, https://hbr.org/2020/01/competing-in-the-age-of-ai
  • 18. Jelonek, D. (2017). Big Data Analytics in the Management of Business. MATEC Web of Conferences, 125, 04021.
  • 19. Jelonek, D., Mesjasz-Lech, A., Stępniak, C., Turek, T., Ziora, L. (2020). The artificial intelligence application in the management of contemporary organization: Theoretical assumptions, current practices and research review. In: Advances in Information and Communication: Proceedings of the 2019 Future of Information and Communication Conference (FICC), Volume 1, pp. 319-327. Springer International Publishing.
  • 20. Kelley, J., Cyphers, B., McSherry, C. (2021, November 15). After Facebook leaks, here is what should come next. Electronic Frontier Foundation. https://www.eff.org/deeplinks/ 2021/11/after-facebook-leaks-here-what-should-come-next
  • 21. Krishen, A.S., Barnes, J.L., Petrescu, M., Janjuha-Jivraj, S. (2024). Tweeting for change: social media narratives for sustainable service. Journal of Research in Interactive Marketing, https://doi.org/10.1108/JRIM-04-2023-0118
  • 22. Kumar, A., Singh, S., Kaur, G. (2019). Fake news detection of Indian and United States election data using machine learning algorithm. International Journal of Innovative Technology and Exploring Engineering, 8(11). 1559-1563. https://doi.org/10.35940/ijitee. K1829.0981119
  • 23. Lee, D., Hosanagar, K., Nair, H.S. (2018). Advertising content and consumer engagement on social media: Evidence from Facebook. Management Science, 64(11), 5105-5131.
  • 24. Liu, Y., Gao, S. (2021). Big Data Technology in Marketing Brand. International Conference on Forthcoming Networks and Sustainability in AIoT Era (FoNeS-AIoT). Nicosia, Turkey, pp. 145-149, doi: 10.1109/FoNeS-AIoT54873.2021.00039.
  • 25. Masna, N.V.R., Zhang, F., Chen, C., Mandal, S., Bhunia, S. (2018). Authentication of dietary supplements through Nuclear Quadrupole Resonance (NQR) spectroscopy. International Journal of Food Science and Technology, 53(12). 2796-2809. https://doi.org/10.1111/ijfs.13892
  • 26. Medina Aguerrebere, P., Medina, E., Gonzalez Pacanowski, T. (2024). The role of smart technologies in French hospitals' branding strategies. Journalism and Media, 5(1), 92-107. https://doi.org/10.3390/journalmedia5010007
  • 27. Nawaz, N., Gomes, A.M. (2019). Artificial intelligence chatbots are new recruiters. International Journal of Advanced Computer Science and Applications, 10(9), 1-5. https://doi.org/10.14569/ijacsa.2019.0100901
  • 28. Nehzat, F. (2015). The impact of supply chain relationship quality on brand promise. Uncertain Supply Chain Management, 3, 141-146.
  • 29. Nwachukwu, D., Affen, M.P. (2023). Artificial intelligence marketing practices: the way forward to better customer experience management in Africa (Systematic Literature Review). International Academy Journal of Management, Marketing and Entrepreneurial Studies, 9(2), 44-62.
  • 30. Özbeyaz, A. (2021). EEG-Based classification of branded and unbranded stimuli associating with smartphone products: Comparison of several machine learning algorithms. Neural Computing and Applications, 33(9). 4579-4593. https://doi.org/10.1007/s00521- 021-05779-0
  • 31. Pappu Rajan, A. (2019). The Effectiveness Of Social Media Content Marketing Towards Brand Health Of A Company: Social Media Analytics. International Journal Of Scientific Technology Research, vol. 8, iss. 11, 1188-1192.
  • 32. Pawełoszek, I., Korczak, J. (2023). Generative AI in Management - Today and Tomorrow. Annales Universitatis Mariae Curie-Skłodowska, sectio H - Oeconomia, Vol. 57, No. 4, doi: 10.17951/h.2023.57.4.123-143.
  • 33. Poria, S., Cambria, E., Gelbukh, A., Bisio, F., Hussain, A. (2015). Sentiment data flow analysis by means of dynamic linguistic patterns. IEEE Computational Intelligence Magazine, 10(4), 26-36. https://doi.org/10.1109/MCI.2015.2471215
  • 34. Preece, C. (2015). The authentic celebrity brand: Unpacking Ai Weiwei's celebritised selves. Journal of Marketing Management, 31(5-6), 616-645. https://doi.org/10.1080/ 0267257X.2014.1000362
  • 35. Soumitra, Dutta., Berend, Wierenga (1992). A knowledge based system for the brand manager. In: Operations Research Proceedings, 1991, p. 328. doi: 10.1007/978-3-642- 46773-8_83
  • 36. Sugiarto, C., Suryanadi, P. (2019). Effectiveness of Brand Management Key Elements in Forming Consumer Loyalty. Sebelas Maret Business Review, Vol. 4, Iss. 1, pp. 47-57.
  • 37. Tamaki, S. (2021). Likes on image posts in social networking services: Impact of travel episode. Journal Of Destination Marketing Management, 20, 100615. doi: 10.1016/j.jdmm.2021.100615.
  • 38. Trappey, C.V., Trappey, A.J.C., Lin, S.C.-C. (2020). Intelligent trademark similarity analysis of image, spelling, and phonetic features using machine learning methodologies. Advanced Engineering Informatics, 45, 101120. https://doi.org/10.1016/j.aei.2020.101120
  • 39. Varsha P.S., Akter, S., Kumar, A., Gochhait, S., Patagundi, B. (2021). The Impact of Artificial Intelligence on Branding: A Bibliometric Analysis (1982-2019). Journal of Global Information Management (JGIM), 29(4), 221-246. http://doi.org/10.4018/ JGIM.20210701.oa10
  • 40. Watanuki, S. (2024). Identifying distinctive brain regions related to consumer choice behaviors on branded foods using activation likelihood estimation and machine learning. Frontiers in Computational Neuroscience, 18. https://doi.org/10.3389/fncom.2024. 1310013
  • 41. Wu, L., Dodoo, N.A., Choi, C. (2023). Brand anthropomorphism on Twitter: Communication strategies and consumer engagement. Journal of Product Brand Management, 32(6), 799-811. https://doi.org/10.1108/jpbm-12-2021-3787
  • 42. Yi, P.K., Ray, N.D., Segall, N. (2023). A novel use of an artificially intelligent Chatbot and a live, synchronous virtual question-and-answer session for fellowship recruitment. BMC Medical Education, 23(1). https://doi.org/10.1186/s12909-022-03872-z
  • 43. Zare, M., Mahmoudi, R. (2021). Customer experience: branding with emotional text mining. Journal of Management Information and Decision Sciences, 24(1), 1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c85323e-c774-4581-bacc-7f4b7c0cd961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.