Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates changes in the composition of oxy-coal combustion products resulting from the recirculation of cooled flue gas (FGR) at 20, 60, 100, 200, and 300°C (containing 70-95 mol% CO2). It presents the results of thermodynamic calculations describing changes in the content of the major, minor, and trace components of flue gases, ash and condensate. The results reflect a scenario of starting the oxy-coal combustion system in a fluidized bed boiler using low-purity oxygen from an air separation unit. This work demonstrates that in FGR loop the major species, i.e., Ar and N2, as well as the minor, e.g., Cl2, PbCl4, HgCl2, and CrOCl3, are accumulated. After nine FGR loops cooled to 300°C, marked increases in concentrations were observed: ZnCl2 and HCl (3-fold), as well as CrO2(OH)2 (2.5-fold). The ash that was formed contained, among others, CaSO4, SiO2, CaMgSi2O6, MgSiO3, ZnFe2O4, and MgCr2O4, whose mass changed in successive reactors asa result of the repeated FGR. Depending on the temperaturę of the cooling reactor, flue gases were subjected to recirculation and the main component of the condensate was H2O or H2SO4·6H2O. The condensate contained chloride salts, e.g.,PbCl2, KCl, and ZnCl2, as well as sulfate salts, i.e., K2SO4 and Na2SO4, in smaller amounts. A consequence of the nine-fold FGR cooled toT≤200°C was, among others, a percentage mass increase in ZnCl2in the condensate. The less cooling applied to flue gases, the more likely the occurrence of sulfates was in the condensate.
Czasopismo
Rocznik
Tom
Strony
102--114
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
Bibliografia
- 1. Gładysz, P., and Ziebik, A. (2015) Complex exergy analysis of an integrated oxy-fuel combustion powerplant with CO2 transport and storage.
- 2. Nemitallah, M. A., Habib, M. A., Badr, H. M., Said, S.A., Jamal, A., Ben-Mansour, R., Mokheimer, E. M. A., and Khaled, M. (2017) Oxy-fuel combustion technology: current status applications, and trends. International Journal of Energy Research, 41(12),1670-1708.
- 3. Dillon, D. J., White, V., Allam, J. A., Rodney, Wall, R. A., and Gibbins, J. (2005) Oxy Combustion Processes for CO2 Capture from Power Plant, Technical Report 2005/9.
- 4. Duan, L., Sun, H., Zhao, C., Zhou, W., and Chen, X. (2014) Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle. Fuel.
- 5. Hu, Y., Yan, J., and Li, H. (2012) Effects of flue gas recycle on oxy-coal power generation systems. Applied Energy.
- 6. Wall, T., Liu, Y., Spero, C., Elliott, L., Khare, S., Rathnam, R., Zeenathal, F., Moghtaderi, B., Buhre, B., Sheng, C., Gupta, R., Yamada, T., Makino, K., and Yu, J. (2009) An overview on oxyfuel coal combustion-State of the art research and technology development. Chemical Engineering Research and Design, 87(8), 1003-1016.
- 7. Font-Palma, C., Errey, O., Corden, C., Chalmers, H., Lucquiaud, M., Sanchez del Rio, M., Jackson, S., Medcalf, D., Livesey, B., Gibbins, J., and Pourkashanian, M. (2016) Integrated oxyfuel power plant with improved CO2 separation and compression technology for EOR application. Process Safety and Environmental Protection,103 (Part B), 455-465.
- 8. Córdoba, P., Maroto-Valer, M., Delgado, M. A. ,Diego, R., Font, O., and Querol, X. (2016) Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions. Environmental Research,145, 154-161.
- 9. Sun, J. Q., Crocker, C. R., and Lillemoen, C. M.(2000) The effect of coal combustion flue gas components on low-level chlorine speciation using EPA Method 26A. Journal of the Air and Waste Management Association, 50(6), 936-940.
- 10. Jano-Ito, M. A., Reed, G. P., and Millan, M. (2014) Comparison of thermodynamic equilibrium predictionson trace element speciation in oxy-fuel and conventional coal combustion power plants. Energy and Fuels, 28 (7), 4666-4683.
- 11. Suriyawong, A. (2009) Oxy-Coal Combustion: Submicrometer Particle Formation, Mercury Speciation, And Their Capture. Thesis, (August 2009).
- 12. Roy, B., Choo, W. L., and Bhattacharya, S. (2013) Prediction of distribution of trace elements under Oxy-fuel combustion condition using Victorian brown coals. Fuel,114, 135-142.
- 13. Xiang, B., Zhang, M., Yang, H., and Lu, J. (2016) Prediction of Acid Dew Point in Flue Gas of Boilers Burning Fossil Fuels. Energy and Fuels,30 (4), 3365-3373.
- 14. Song, W., Jiao, F., Yamada, N., Ninomiya, Y., and Zhu, Z. (2013) Condensation behavior of heavy metals during oxy-fuel combustion: Deposition, species distribution, and their particle characteristics. Energyand Fuels, 27(10), 5640-5652.
- 15. Toftegaard, M.B., Brix, J., Jensen, P.A., Glarborg,P., and Jensen, A.D. (2010) Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36 (5), 581-625.
- 16. Wang, H., Duan, Y., Li, Ya-ning, Xue, Y., and Liu, M. (2016) Investigation of mercury emission and its speciation from an oxy-fuel circulating fluidized bed combustor with recycled warm flue gas. Chemical Engineering Journal, 300, 230-235.
- 17. Seltzer, A., Fan, Z., and Archie, R. (2006) Conceptual Design of Supercritical O2- Based PC Boiler Final Report. (November), 1-165.
- 18. Hagi, H., Nemer, M., Le Moullec, Y., and Bouallou, C. (2013) Assessment of the flue gas recycle strategies on oxy-coal power plants using an exergy-based methodology. Chemical Engineering Transactions, 35, 343-348.
- 19. Majchrzak, A., and Nowak, W. (2017) Separation characteristics as a selection criteria of CO2 adsorbents. Journal of CO2 Utilization,17, 69-79.
- 20. Hotta, A. (2009) Foster Wheeler’s Solutions for Large Scale CFB Boiler Technology: Features and Operational Performance of Łagisza 460 MWe CFB Boiler, Springer.
- 21. Goloubev, D. (2012) Oxygen production for oxy-fuel power plants. Status of development. 2nd International Workshop on Oxyfuel FBC Technology, June 28-29th 2012, IFK University of Stuttgart.
- 22. Meng, Y., Liang, X., Zhang, L., Jiao, F., Kumita, M., Namioka, T., Yamada, N., Sato, A., and Ninomiya, Y. (2015) Condensation behavior of heavy metal vapors upon flue gas cooling in oxy-fuel versus air combustion. Journal of Chemical Engineering of Japan, 48 (6), 450-457.
- 23. Jiang, Z., Duan, L., Chen, X., and Zhao, C.(2013) Effect of water vapor on indirect sulfation during oxy-fuel combustion. Energy and Fuels, 27 (3),1506-1512.
- 24. Dranga, B. A., Lazar, L., and Koeser, H. (2012) Oxidation catalysts for elemental mercury in flue gases- A review. Catalysts, 2 (1), 139-170.
- 25. Cheng, C. M., Hack, P., Chu, P., Chang, Y. N., Lin,T. Y., Ko, C. S., Chiang, P. H., He, C. C., Lai, Y. M., and Pan, W. P. (2009) Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems. Energy and Fuels, 23 (10), 4805-4815.
- 26. Wu, J., Cao, Y., Pan, W., and Pan, W. (2015)The Status of Mercury Emission from Coal Combustion Power Station. In Coal Fired Flue Gas Mercury Emission Controls, pp. 19-30.
- 27. Sakano, T., Furuuchi, M., Hata, M., Kanaoka, C., and Yang, K.-S. (2015) Separation Characteristics of Heavy Metal Compounds by Hot Gas Cleaning. Proc. of 5th International Symposium on Gas Cleaning at High Temperature.
- 28. Opila, E. J., Myers, D. L., Jacobson, N. S., Nielsen, I. M. B., Johnson, D. F., Olminsky, J. K., and Allendor, M. D. (2007) Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g). Journal of Physical Chemistry A, 111 (10), 1971-1980.
- 29. Kinnunen, H., Hedman, M., Engblom, M., Lindberg, D., Uusitalo, M., Enestam, S., and Yrjas, P.(2017) The influence of flue gas temperature on leadchloride induced high temperature corrosion. Fuel,196, 241-251.
- 30. Fleig, D., Andersson, K., Johnsson, F., and Leckner, B. (2011) Conversion of sulfur during pulverized oxy-coal combustion. Energy and Fuels, 25 (2),647-655.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c839590-68e7-46ea-b2af-5264326a9107