PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Life cycle assessment of renewable energy sources - key issues. Bibliometric analysis of the literature

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena cyklu życia odnawialnych źródeł energii - kluczowe zagadnienia. Analiza bibliometryczna literatury
Języki publikacji
EN
Abstrakty
EN
The aim of the analysis is to systematise scientific research related to the issue of environmental life cycle assessment (LCA) of renewable energy sources (RES) to identify key thematic areas and future research directions. A systematic literature review was applied based on bibliometric analysis of publications contained in scientific databases. The research request included records containing the term RES or the names of individual technologies in the titles in combination with the term LCA. A bibliometric analysis of over 1,000 publications identified four thematic clusters of research sub-areas and provided examples of publications referring to them. The result was a number of statistics, such as the structure of publication types, the productivity of authors by their nationality and the share of scientific disciplines. The analysis identified the most important publications in the thematic area. A review shows the interdisciplinarity of the research carried out and the relevance of the topic.
PL
Celem analizy jest usystematyzowanie badań naukowych związanych z zagadnieniem środowiskowej oceny cyklu życia (LCA) odnawialnych źródeł energii (OZE), identyfikacja kluczowych obszarów tematycznych oraz przyszłych kierunków badań. Zastosowano systematyczny przegląd literatury oparty na analizie bibliometrycznej publikacji zawartych w naukowych bazach danych. Zapytanie badawcze obejmowało rekordy zawierające w tytułach termin OZE lub nazwy poszczególnych technologii w połączeniu z terminem LCA. Analiza bibliometryczna ponad 1000 publikacji pozwoliła zidentyfikować cztery klastry tematyczne, podobszary badawcze oraz podać przykłady publikacji odnoszących się do nich. W rezultacie uzyskano szereg statystyk, takich jak struktura typów publikacji, produktywność autorów według ich narodowości czy udział dyscyplin naukowych. Analiza pozwoliła zidentyfikować najważniejsze publikacje w danym obszarze tematycznym. Przegląd wskazuje na interdyscyplinarność prowadzonych badań i istotność tematu.
Rocznik
Tom
Strony
art. no. 839
Opis fizyczny
Bibliogr. 84 poz., rys., tab., wykr.
Twórcy
Bibliografia
  • Adedeji, P. A., Akinlabi, S. A., Madushele, N., & Olatunji, O. O. (2020). Potential roles of artificial intelligence in the lci of renewable energy systems. In S.S. Emamian, M. Awang & F. Yusof (Eds.), Advances in Manufacturing Engineering (pp. 275-285). Singapore: Springer. https://doi.org/10.1007/978-981-15-5753-8_26
  • Agrawal, B., & Tiwari, G. N. (2010). Life cycle cost assessment of building integrated photovoltaic thermal (BIPVT) systems. Energy and Buildings, 42(9), 1472-1481. https://doi.org/10.1016/j.enbuild.2010.03.017
  • Alberola-Borràs, J.-A., Baker, J. A., De Rossi, F., Vidal, R., Beynon, D., Hooper, K. E. A., Watson, T. M., & Mora-Seró, I. (2018). Perovskite Photovoltaic Modules: Life Cycle Assessment of Pre-industrial Production Process. IScience, 9, 542-551. https://doi.org/10.1016/j.isci.2018.10.020
  • Allouhi, A. (2020). Solar PV integration in commercial buildings for self-consumption based on life-cycle economic/environmental multi-objective optimization. Journal of Cleaner Production, 270, 122375. https://doi.org/10.1016/j.jclepro.2020.122375
  • Amini Toosi, H., Del Pero, C., Leonforte, F., Lavagna, M., & Aste, N. (2023). Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization. Applied Energy, 334, 120648. https://doi.org/10.1016/j.apenergy.2023.120648
  • Ansanelli, G., Fiorentino, G., Tammaro, M., & Zucaro, A. (2021). A Life Cycle Assessment of a recovery process from End-of-Life Photovoltaic Panels. Applied Energy, 290, 116727. https://doi.org/10.1016/j.apenergy.2021.116727
  • Ardente, F., Beccali, G., Cellura, M., & Lo Brano, V. (2005). Life cycle assessment of a solar thermal collector. Renewable Energy, 30(7), 1031-1054. https://doi.org/10.1016/j.renene.2004.09.009
  • Aryan, V., Font-Brucart, M., & Maga, D. (2018). A comparative life cycle assessment of end-of-life treatment pathways for photovoltaic backsheets. Progress in Photovoltaics: Research and Applications, 26(7), 443-459. https://doi.org/10.1002/pip.3003
  • Asdrubali, F., Baldinelli, G., D’Alessandro, F., & Scrucca, F. (2015). Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renewable and Sustainable Energy Reviews, 42, 1113-1122. https://doi.org/10.1016/j.rser.2014.10.082
  • Baharwani, V., Meena, N., Dubey, A., Sharma, D., Brighu, U., & Mathur, J. (2014). Life cycle inventory and assessment of different solar photovoltaic systems. Proceedings of the 2014 Power and Energy Systems Conference: Towards Sustainable Energy, Bangalore, India, 1-5. https://doi.org/10.1109/PESTSE.2014.6805302
  • Battisti, R., & Corrado, A. (2005). Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology. Energy, 30(7), 952-967. https://doi.org/10.1016/j.energy.2004.07.011
  • Bayer, P., Rybach, L., Blum, P., & Brauchler, R. (2013). Review on life cycle environmental effects of geothermal power generation. Renewable and Sustainable Energy Reviews, 26, 446-463. https://doi.org/10.1016/j.rser.2013.05.039
  • Brenner, W., Bednar, N., Biermayr, P., & Adamovic, N. (2018). Standardization and Life Cycle Cost Assessment Approach in Circular Economy for Photovoltaic Waste. Proceedings of the 3rd International Conference on Smart and Sustainable Technologies, Split, Croatia, 8448370. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053468706&partnerID=40&md5=f3661e7f0e23130bf5a8eecc0b1231de
  • Burch, J., Salasovich, J., & Hillman, T. (2005). Cold-climate solar domestic water heating systems: Life-cycle analyses and opportunities for cost reduction. Proceedings of the Solar World Congress 2005: Bringing Water to the World, Including Proceedings of 34th ASES Annual Conference and Proceedings of 30th National Passive Solar Conference, Orlando, United States, 4, 2409-2414. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870591682&partnerID=40&md5=cf403dad2e95739544cb4be66108b791
  • Burkhardt III, J. J., Heath, G. A., Turchi, C. S., Burkhardt, J. J., Heath, G. A., & Turchi, C. S. (2011). Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environmental Science & Technology, 45(6), 2457-2464. https://doi.org/10.1021/es1033266
  • Campos-Guzmán, V., García-Cáscales, M. S., Espinosa, N., & Urbina, A. (2019). Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renewable and Sustainable Energy Reviews, 104, 343-366. https://doi.org/10.1016/j.rser.2019.01.031
  • De Wild-Scholten, M. J., & Alsema, E. A. (2006). Environmental life cycle inventory of crystalline silicon photovoltaic module production. Proceedings of the Materials Research Society Symposium, Boston, United Nations, 895, 59-71. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646386676&partnerID=40&md5=f28588b072fdd09228925190cca0d3e3
  • Dufo-Lopez, R., Bernal-Agustin, J. L., Yusta-Loyo, J. M., Dominguez-Navarro, J. A., Ramirez-Rosado, I. J., Lujano, J., Aso, I., Dufo-López, R., Bernal-Agustín, J. L., Yusta-Loyo, J. M., Domínguez-Navarro, J. A., Ramírez-Rosado, I. J., Lujano, J., & Aso, I. (2011). Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage. Applied Energy, 88(11), 4033-4041. https://doi.org/10.1016/j.apenergy.2011.04.019
  • Espinosa, N., García-Valverde, R., Urbina, A., & Krebs, F. C. (2011). A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. Solar Energy Materials and Solar Cells, 95(5), 1293-1302. https://doi.org/10.1016/j.solmat.2010.08.020
  • Fthenakis, V. M. (2004). Life cycle impact analysis of cadmium in CdTe PV production. Renewable and Sustainable Energy Reviews, 8(4), 303-334. https://doi.org/10.1016/j.rser.2003.12.001
  • Fthenakis, V. M., & Kim, H. C. (2007). Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study. Energy Policy, 35(4), 2549-2557. https://doi.org/10.1016/j.enpol.2006.06.022
  • Fthenakis, V. M., & Kim, H. C. (2011). Photovoltaics: Life-cycle analyses. Solar Energy, 85(8), 1609-1628. https://doi.org/10.1016/J.SOLENER.2009.10.002
  • Fthenakis, V. M., Hyung, C. K., & Alsema, E. (2008). Emissions from photovoltaic life cycles. Environmental Science and Technology, 42(6), 2168-2174. https://doi.org/10.1021/ES071763Q
  • Fthenakis, V., Wang, W., & Kim, H. C. (2009). Life cycle inventory analysis of the production of metals used in photovoltaics. Renewable and Sustainable Energy Reviews, 13(3), 493-517. https://doi.org/10.1016/j.rser.2007.11.012
  • Ganesan, K., & Valderrama, C. (2022). Anticipatory life cycle analysis framework for sustainable management of end-of-life crystalline silicon photovoltaic panels. Energy, 245, 123207. https://doi.org/10.1016/j.energy.2022.123207
  • Gołębiowska, J., & Żelazna, A. (2018). Analysis of solar collectors application and the influence of domestic hot water consumption on energy demand in multifamily buildings with implementation of LCA methodology. In S. Nižetić & A. Papadopoulos (Eds.), Green Energy and Technology (pp. 617-624). Cham: Springer. https://doi.org/10.1007/978-3-319-89845-2_43
  • Gong, J., Darling, S. B., & You, F. (2015). Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts. Energy and Environmental Science, 8(7), 1953-1968. https://doi.org/10.1039/c5ee00615e
  • Gouveia, J. R., Silva, E., Mata, T. M., Mendes, A., Caetano, N. S., & Martins, A. A. (2020). Life cycle assessment of a renewable energy generation system with a vanadium redox flow battery in a NZEB household. Energy Reports, 6, 87-94. https://doi.org/10.1016/j.egyr.2019.08.024
  • Greening, B., & Azapagic, A. (2012). Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK. Energy, 39(1), 205-217. https://doi.org/10.1016/j.energy.2012.01.028
  • Guillén-Lambea, S., Sierra-Pérez, J., García-Pérez, S., Montealegre, A. L., & Monzón-Chavarrías, M. (2023). Energy Self-Sufficiency Urban Module (ESSUM): GIS-LCA-based multi-criteria methodology to analyze the urban potential of solar energy generation and its environmental implications. Science of the Total Environment, 879, 163077. https://doi.org/10.1016/j.scitotenv.2023.163077
  • Hang, Y., Qu, M., & Zhao, F. (2012). Economic and environmental life cycle analysis of solar hot water systems in the United States. Energy and Buildings, 45, 181-188. https://doi.org/10.1016/j.enbuild.2011.10.057
  • Hendrickson, T. P., Horvath, A., & Madanat, S. M. (2013). Life-cycle costs and emissions of pareto-optimal residential roof-mounted photovoltaic systems. Journal of Infrastructure Systems, 19(3), 306-314. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000122
  • Hin, J. N. C., Zmeureanu, R., Cheng Hin, J. N., & Zmeureanu, R. (2014). Optimization of a residential solar combisystem for minimum life cycle cost, energy use and exergy destroyed. Solar Energy, 100, 102-113. https://doi.org/10.1016/j.solener.2013.12.001
  • Hong, J., Chen, W., Qi, C., Ye, L., & Xu, C. (2016). Life cycle assessment of multicrystalline silicon photovoltaic cell production in China. Solar Energy, 133, 283-293. https://doi.org/10.1016/j.solener.2016.04.013
  • Jiao, Y., & Månsson, D. (2023). Greenhouse gas emissions from hybrid energy storage systems in future 100% renewable power systems – A Swedish case based on consequential life cycle assessment. Journal of Energy Storage, 57, 106167. https://doi.org/10.1016/j.est.2022.106167
  • Kaczmarczyk, M. (2019). Methodology and impact categories of environmental life cycle assessment in geothermal energy sector. E3S Web of Conferences, 100, 00032. https://doi.org/10.1051/e3sconf/201910000032
  • Kalogirou, S. (2009). Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters. Solar Energy, 83(1), 39-48. https://doi.org/10.1016/j.solener.2008.06.005
  • Karlsdottir, M. R., Palsson, O. P., & Palsson, H. (2010). LCA of combined heat and power production at hellisheidi geothermal power plant with focus on primary energy efficiency. Proceedings of the 12th International Symposium on District Heating and Cooling, Tallinn, Estonia, 184-192. https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952655547&partnerID=40&md5=c9dcdc94bc943f0568faf8a2addf9aee
  • Khanahmadi, A., Mozaffarilegha, M., Manthouri, M., & Ghaffarpour, R. (2021). A novel economic method of battery modeling in stand-alone renewable energy systems to reduce life cycle costs. Journal of Energy Storage, 44, 103422. https://doi.org/10.1016/j.est.2021.103422
  • Ko, M. J. (2015). Analysis and optimization design of a solar water heating system based on life cycle cost using a genetic algorithm. Energies, 8(10), 11380-11403. https://doi.org/10.3390/en81011380
  • Koroneos, C., & Tsarouhis, M. (2012). Exergy analysis and life cycle assessment of solar heating and cooling systems in the building environment. Journal of Cleaner Production, 32, 52-60. https://doi.org/10.1016/j.jclepro.2012.03.012
  • Košičan, J., Pardo Picazo, M. Á., Vilčeková, S., & Košičanová, D. (2021). Life cycle assessment and economic energy efficiency of a solar thermal installation in a family house. Sustainability, 13(4), 1-20. https://doi.org/10.3390/su13042305
  • Laleman, R., Albrecht, J., & Dewulf, J. (2011). Life cycle analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation. Renewable and Sustainable Energy Reviews, 15(1), 267-281. https://doi.org/10.1016/j.rser.2010.09.025
  • Lamnatou, C., Smyth, M., & Chemisana, D. (2019). Building-Integrated Photovoltaic/Thermal (BIPVT): LCA of a façade-integrated prototype and issues about human health, ecosystems, resources. Science of the Total Environment, 660, 1576-1592. https://doi.org/10.1016/j.scitotenv.2018.12.461
  • Latunussa, C. E. L., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101-111. https://doi.org/10.1016/j.solmat.2016.03.020
  • Leccisi, E., & Fthenakis, V. (2021). Life cycle energy demand and carbon emissions of scalable single-junction and tandem perovskite PV. Progress in Photovoltaics: Research and Applications, 29(10), 1078-1092. https://doi.org/10.1002/pip.3442
  • Leckner, M., & Zmeureanu, R. (2011). Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem. Applied Energy, 88(1), 232-241. https://doi.org/10.1016/j.apenergy.2010.07.031
  • Lim, M. S. W., He, D., Tiong, J. S. M., Hanson, S., Yang, T. C.-K., Tiong, T. J., Pan, G.-T., & Chong, S. (2022). Experimental, economic and life cycle assessments of recycling end-of-life monocrystalline silicon photovoltaic modules. Journal of Cleaner Production, 340, 130796. https://doi.org/10.1016/j.jclepro.2022.130796
  • Ludin, N. A., Mustafa, N. I., Hanafiah, M. M., Ibrahim, M. A., Asri Mat Teridi, M., Sepeai, S., Zaharim, A., & Sopian, K. (2018). Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renewable and Sustainable Energy Reviews, 96, 11-28. https://doi.org/10.1016/j.rser.2018.07.048
  • Lunardi, M. M., Alvarez-Gaitan, J. P., Bilbao, J. I., & Corkish, R. (2018). Comparative life cycle assessment of end-of-life silicon solar photovoltaic modules. Applied Sciences, 8(8), 1396. https://doi.org/10.3390/app8081396
  • Maceno, M. M. C., Pilz, T. L., & Oliveira, D. R. (2022). Life Cycle Assessment and Circular Economy: A Case Study of a Photovoltaic Solar Panel in Brazil. Journal of Environmental Accounting and Management, 10(1), 91-111. https://doi.org/10.5890/JEAM.2022.03.008
  • Magrassi, F., Del Borghi, A., Gallo, M., & Marotta, V. (2017). Analysis, comparisons and potential of a Hybrid Solar Power System through a life cycle approach. Proceedings of the 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017, San Diego, United States, 136555. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048598187&partnerID=40&md5=a62dda57b8a6b97ceeac3007b99f1765
  • Martínez-Corona, J. I., Gibon, T., Hertwich, E. G., Parra-Saldívar, R., Martinez-Corona, J. I., Gibon, T., Hertwich, E. G., & Parra-Saldivar, R. (2017). Hybrid life cycle assessment of a geothermal plant: From physical to monetary inventory accounting. Journal of Cleaner Production, 142, 2509-2523. https://doi.org/10.1016/j.jclepro.2016.11.024
  • Montanarella, L., & Panagos, P. (2021). The relevance of sustainable soil management within the European Green Deal. Land Use Policy, 100, 104950. https://doi.org/10.1016/J.LANDUSEPOL.2020.104950
  • Motuzienė, V., Čiuprinskas, K., Rogoža, A., & Lapinskienė, V. (2022). A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies. Energies, 15(22), 8488. https://doi.org/10.3390/en15228488
  • Mousavi, S. A., Mehrpooya, M., & Delpisheh, M. (2022). Development and life cycle assessment of a novel solar-based cogeneration configuration comprised of diffusion-absorption refrigeration and organic Rankine cycle in remote areas. Process Safety and Environmental Protection, 159, 1019-1038. https://doi.org/10.1016/j.psep.2022.01.067
  • Muller, A., Friedrich, L., Reichel, C., Herceg, S., Mittag, M., Neuhaus, D. H., Müller, A., Friedrich, L., Reichel, C., Herceg, S., Mittag, M., & Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar Energy Materials And Solar Cells, 230, 111277. https://doi.org/10.1016/j.solmat.2021.111277
  • Naves, A. X., Barreneche, C., Fernández, A. I., Cabeza, L. F., Haddad, A. N., & Boer, D. (2019). Life cycle costing as a bottom line for the life cycle sustainability assessment in the solar energy sector: A review. Solar Energy, 192, 238-262. https://doi.org/10.1016/j.solener.2018.04.011
  • Pacca, S., Sivaraman, D., & Keoleian, G. A. (2007). Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy, 35(6), 3316-3326. https://doi.org/10.1016/j.enpol.2006.10.003
  • Paiho, S., Pulakka, S., & Knuuti, A. (2017). Life-cycle cost analyses of heat pump concepts for Finnish new nearly zero energy residential buildings. Energy and Buildings, 150, 396-402. https://doi.org/10.1016/j.enbuild.2017.06.034
  • Pal, A., & Kilby, J. (2019). Using Life Cycle Assessment to Determine the Environmental Impacts Caused by Solar Photovoltaic Systems. E3S Web of Conferences, 122, 02005. https://doi.org/10.1051/e3sconf/201912202005
  • Pastore, T., & Ignatova, M. (2010). Life-Cycle and Cost-Benefit Analyses of Renewable Energy: The Case of Solar Power Systems. In W.W. Clark II (Ed.), Sustainable Communities Design Handbook (pp. 139-148). Oxford: Butterworth-Heinemann. https://doi.org/10.1016/B978-1-85617-804-4.00008-2
  • Pehnt, M. (2006). Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 31(1), 55-71. https://doi.org/10.1016/j.renene.2005.03.002
  • Peng, J., Lu, L., & Yang, H. (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews, 19, 255-274. https://doi.org/10.1016/j.rser.2012.11.035
  • Raugei, M., Keena, N., Novelli, N., Aly Etman, M., & Dyson, A. (2021). Life cycle assessment of an ecological living module equipped with conventional rooftop or integrated concentrating photovoltaics. Journal of Industrial Ecology, 25(5), 1207-1221. https://doi.org/10.1111/jiec.13129
  • Ren, M., Mitchell, C. R., & Mo, W. (2020). Dynamic life cycle economic and environmental assessment of residential solar photovoltaic systems. Science of the Total Environment, 722, 137932. https://doi.org/10.1016/j.scitotenv.2020.137932
  • Sajid, M. U., & Bicer, Y. (2021). Comparative life cycle cost analysis of various solar energy-based integrated systems for self-sufficient greenhouses. Sustainable Production and Consumption, 27, 141-156. https://doi.org/10.1016/j.spc.2020.10.025
  • Saner, D., Juraske, R., Kübert, M., Blum, P., Hellweg, S., & Bayer, P. (2010). Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems. Renewable and Sustainable Energy Reviews, 14(7), 1798-1813. https://doi.org/10.1016/j.rser.2010.04.002
  • Saoud, A., Harajli, H., & Manneh, R. (2021). Cradle-to-grave life cycle assessment of an air to water heat pump: Case study for the Lebanese context and comparison with solar and conventional electric water heaters for residential application. Journal of Building Engineering, 44, 103253. https://doi.org/10.1016/j.jobe.2021.103253
  • Shonder, J. A., Martin, M. A., McLain, H. A., & Hughes, P. J. (2000). Comparative analysis of life-cycle costs of geothermal heat pumps and three conventional HVAC systems. ASHRAE Transactions, 106, 00012505. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034460506&partnerID=40&md5=b0ed20c75a81cdc8e82180c12a1c26e4
  • Silva, S. M., Mateus, R., Marques, L., Ramos, M., & Almeida, M. (2016). Contribution of the solar systems to the nZEB and ZEB design concept in Portugal – Energy, economics and environmental life cycle analysis. Solar Energy Materials and Solar Cells, 156, 59-74. https://doi.org/10.1016/j.solmat.2016.04.053
  • Sim, M., & Suh, D. (2021). A heuristic solution and multi-objective optimization model for life-cycle cost analysis of solar PV/GSHP system: A case study of campus residential building in Korea. Sustainable Energy Technologies and Assessments, 47, 101490. https://doi.org/10.1016/j.seta.2021.101490
  • Symeonidou, M. M., Zioga, C., & Papadopoulos, A. M. (2021). Life cycle cost optimization analysis of battery storage system for residential photovoltaic panels. Journal of Cleaner Production, 309, 127234. https://doi.org/10.1016/j.jclepro.2021.127234
  • Szpilko, D., & Ejdys, J. (2022). European Green Deal — Research Directions. A Systematic Literature Review. Economics and Environment, 81(2), 8-38. https://doi.org/10.34659/eis.2022.81.2.455
  • Szum, K. (2021). IoT-based smart cities: A bibliometric analysis and literature review. Engineering Management in Production and Services, 13(2), 115-136. https://doi.org/10.2478/EMJ-2021-0017
  • Thapa, B., Wang, W., & Williams, W. (2022). Life-cycle cost optimization of a solar combisystem for residential buildings in Nepal. Journal of Asian Architecture and Building Engineering, 21(3), 1137-1148. https://doi.org/10.1080/13467581.2021.1928502
  • Tomasini-Montenegro, C., Santoyo-Castelazo, E., Gujba, H., Romero, R. J., & Santoyo, E. (2017). Life cycle assessment of geothermal power generation technologies: An updated review. Applied Thermal Engineering, 114, 1119-1136. https://doi.org/10.1016/j.applthermaleng.2016.10.074
  • Tosti, L., Ferrara, N., Basosi, R., & Parisi, M. L. (2020). Complete data inventory of a geothermal power plant for robust cradle-to-grave life cycle assessment results. Energies, 13(11), 2839. https://doi.org/10.3390/en13112839
  • Uctug, F. G., & Azapagic, A. (2018). Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions. Science of the Total Environment, 622-623, 1202-1216. https://doi.org/10.1016/j.scitotenv.2017.12.057
  • Varun Bhat, I. K., & Prakash, R. (2009). LCA of renewable energy for electricity generation systems-A review. Renewable and Sustainable Energy Reviews, 13(5), 1067-1073. https://doi.org/10.1016/j.rser.2008.08.004
  • Vellini, M., Gambini, M., & Prattella, V. (2017). Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels. Energy, 138, 1099-1111. https://doi.org/10.1016/j.energy.2017.07.031
  • Zeiler, W., Vanderveen, A., Maassen, W., & Maaijen, R. (2017). Green buildings and renewable energy application based on life cycle performance costing. In A. Sayigh (Ed.), Mediterranean Green Buildings and Renewable Energy (pp. 73-87). Cham: Springer. https://doi.org/10.1007/978-3-319-30746-6_6
  • Zhai, P., & Williams, E. D. (2010). Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems. Environmental Science and Technology, 44(20), 7950-7955. https://doi.org/10.1021/es1026695
  • Zheng, N., Zhang, H., Duan, L., & Wang, Q. (2023). Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method. Energy, 265, 126343. https://doi.org/10.1016/j.energy.2022.126343
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c7fb1f4-565e-4031-979b-080240b7b67f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.