PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Fractal dimensions in the Gromov–Hausdorff space

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We first show that for any four non-negative real numbers, there exists a Cantor ultrametric space whose Hausdorff dimension, packing dimension, upper box dimension, and Assouad dimension are equal to the given four numbers, respectively. Next, using a direct sum of metric spaces, we construct topological embeddings of an arbitrary compact metrizable space into the two subsets of the Gromov–Hausdorff space: the set of all compact metric spaces possessing prescribed topological dimension and the aforementioned four dimensions, and the set of all compact ultrametric spaces.
Rocznik
Strony
147--168
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Photonics Control Technology Team, RIKEN Center for Advanced Photonics Wako, Saitama 351-0198, Japan
Bibliografia
  • [1] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, Grad. Stud.Math. 33, Amer. Math. Soc., Providence, RI, 2001.
  • [2] M. G. Charalambous, Dimension Theory: A Selection of Theorems and Counter-examples, Atlantis Stud. Math. 7, Springer, Cham, 2019.
  • [3] C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic Theory Dynam. Systems 10 (1990), 451-462.
  • [4] C. D. Cutler, The density theorem and Hausdorff inequality for packing measure in general metric spaces, Illinois J. Math. 39 (1995), 676-694.
  • [5] G. David and S. Semmes, Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure, Oxford Lecture Ser. Math. Appl. 7, Oxford Univ.Press, 1997.
  • [6] K. Falconer, Techniques in Fractal Geometry, Wiley, Chichester, 1997.
  • [7] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 3rd ed., Wiley, 2004.
  • [8] J. M. Fraser, Assouad Dimension and Fractal Geometry, Cambridge Tracts in Math. 222, Cambridge Univ. Press, 2020.
  • [9] I. Garcia, K. Hare, and F. Mendivil, Assouad dimensions of complementary sets, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), 517-540.
  • [10] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, New York, 2001.
  • [11] W. Hurewicz and H. Wallman, Dimension Theory, rev. ed., Princeton Univ. Press, 1948.
  • [12] Y. Ishiki, Quasi-symmetric invariant properties of Cantor metric spaces, Ann. Inst. Fourier (Grenoble) 69 (2019), 2681-2721.
  • [13] Y. Ishiki, Branching geodesics of the Gromov-Hausdorff distance, arXiv:2108.06970 (2021).
  • [14] Y. Ishiki, On dense subsets in spaces of metrics, Colloq. Math. 170 (2022), 27-39.
  • [15] A. O. Ivanov and A. A. Tuzhilin, Isometry group of Gromov-Hausdorff space, Mat. Vesnik 71 (2019), 123-154.
  • [16] H. J. Joyce, Packing measures, packing dimensions, and the existence of sets of positive finite measure, PhD thesis, Univ. of London, Univ. College London, 1995.
  • [17] J. L. Kelly, General Topology, Springer, New York, 1975.
  • [18] D. G. Larman, A new theory of dimension, Proc. London Math. Soc. 3 (1967), 178-192.
  • [19] F. Mémoli, Z. Smith, and Z. Wan, Gromov-Hausdorff distances on p-metric spaces and ultrametric spaces, arXiv:1912.00564 (2019).
  • [20] L. Mišík and T. Žáčik, On some properties of the metric dimension, Comment. Math.Univ. Carolin. 31 (1990), 781-791.
  • [21] J. Nagata, Modern Dimension Theory, Sigma Ser. Pure Math. 2, Heldermann, Berlin, 1983.
  • [22] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82-196.
  • [23] A. R. Pears, Dimension Theory of General Spaces, Cambridge Univ. Press, 1975.
  • [24] E. Szpilrajn, La dimension et la mesure, Fund. Math. 28 (1937), 81-89.
  • [25] S. Willard, General Topology, Dover Publ., 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c7ea847-c1b1-461a-88fa-6dc14c3fdd56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.