Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We first show that for any four non-negative real numbers, there exists a Cantor ultrametric space whose Hausdorff dimension, packing dimension, upper box dimension, and Assouad dimension are equal to the given four numbers, respectively. Next, using a direct sum of metric spaces, we construct topological embeddings of an arbitrary compact metrizable space into the two subsets of the Gromov–Hausdorff space: the set of all compact metric spaces possessing prescribed topological dimension and the aforementioned four dimensions, and the set of all compact ultrametric spaces.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
147--168
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics Wako, Saitama 351-0198, Japan
Bibliografia
- [1] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, Grad. Stud.Math. 33, Amer. Math. Soc., Providence, RI, 2001.
- [2] M. G. Charalambous, Dimension Theory: A Selection of Theorems and Counter-examples, Atlantis Stud. Math. 7, Springer, Cham, 2019.
- [3] C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic Theory Dynam. Systems 10 (1990), 451-462.
- [4] C. D. Cutler, The density theorem and Hausdorff inequality for packing measure in general metric spaces, Illinois J. Math. 39 (1995), 676-694.
- [5] G. David and S. Semmes, Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure, Oxford Lecture Ser. Math. Appl. 7, Oxford Univ.Press, 1997.
- [6] K. Falconer, Techniques in Fractal Geometry, Wiley, Chichester, 1997.
- [7] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, 3rd ed., Wiley, 2004.
- [8] J. M. Fraser, Assouad Dimension and Fractal Geometry, Cambridge Tracts in Math. 222, Cambridge Univ. Press, 2020.
- [9] I. Garcia, K. Hare, and F. Mendivil, Assouad dimensions of complementary sets, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), 517-540.
- [10] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, New York, 2001.
- [11] W. Hurewicz and H. Wallman, Dimension Theory, rev. ed., Princeton Univ. Press, 1948.
- [12] Y. Ishiki, Quasi-symmetric invariant properties of Cantor metric spaces, Ann. Inst. Fourier (Grenoble) 69 (2019), 2681-2721.
- [13] Y. Ishiki, Branching geodesics of the Gromov-Hausdorff distance, arXiv:2108.06970 (2021).
- [14] Y. Ishiki, On dense subsets in spaces of metrics, Colloq. Math. 170 (2022), 27-39.
- [15] A. O. Ivanov and A. A. Tuzhilin, Isometry group of Gromov-Hausdorff space, Mat. Vesnik 71 (2019), 123-154.
- [16] H. J. Joyce, Packing measures, packing dimensions, and the existence of sets of positive finite measure, PhD thesis, Univ. of London, Univ. College London, 1995.
- [17] J. L. Kelly, General Topology, Springer, New York, 1975.
- [18] D. G. Larman, A new theory of dimension, Proc. London Math. Soc. 3 (1967), 178-192.
- [19] F. Mémoli, Z. Smith, and Z. Wan, Gromov-Hausdorff distances on p-metric spaces and ultrametric spaces, arXiv:1912.00564 (2019).
- [20] L. Mišík and T. Žáčik, On some properties of the metric dimension, Comment. Math.Univ. Carolin. 31 (1990), 781-791.
- [21] J. Nagata, Modern Dimension Theory, Sigma Ser. Pure Math. 2, Heldermann, Berlin, 1983.
- [22] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82-196.
- [23] A. R. Pears, Dimension Theory of General Spaces, Cambridge Univ. Press, 1975.
- [24] E. Szpilrajn, La dimension et la mesure, Fund. Math. 28 (1937), 81-89.
- [25] S. Willard, General Topology, Dover Publ., 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c7ea847-c1b1-461a-88fa-6dc14c3fdd56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.