PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ADM1-based modeling of anaerobic codigestion of maize silage and cattle manure : a feedstock characterisation for model implementation. Part 1

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie kofermentacji kiszonki kukurydzy i obornika bydlęcego za pomocą ADM1 : charakterystyka wsadu surowcowego. Część 1
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of fractionation of particulate and soluble organic matter in a mixture of maize silage and cattle manure (49:51% volatile solids) that was used as a feedstock for anaerobic digestion. The extended Weender’s analysis was adapted to measure raw protein, raw lipids, fraction of carbohydrates (including starch, cellulose, hemicelluloses) and lignin. The content of individual fractions in composite, Xc (as kg COD kg-1 COD) was: 0.111 proteins, 0.048 lipids, 0.500 carbohydrates and 0.341 inerts. The biodegradability of Xc was 68%. Based on material balance, the carbon concentration in Xc was 0.0326 kmol C kg-1 COD, whereas nitrogen concentration 0.0018 kmol N kg-1 COD. The estimated pH of the feedstock based on acid-base equilibrium corresponded to the actual value (pH 7.14).
PL
W pracy przedstawiono wyniki stężenia substancji chemicznych rozpuszczonych i nierozpuszczonych w mieszaninie kiszonki kukurydzy zwyczajnej i obornika bydlęcego (49:51% suchej masy organicznej), który wykorzystano jako substrat do wytwarzania biogazu. Do frakcjonowania nierozpuszczalnych związków organicznych, stanowiących kompozyt (Xc), wykorzystano metodę Weender’a. Udział poszczególnych frakcji (jako ChZT) w kompozycie wyniósł: białka - 0,111, tłuszcze - 0,048, węglowodany - 0,500 oraz związki inertne - 0,341. Stężenie związków biodegradowalnych w kompozycie wyniosło 68%. Na podstawie bilansu materiałowego węgla i azotu obliczono, że stężenie węgla w kompozycie wynosi 0,0326 kmol C kg-1 ChZT, zaś azotu 0,0018 kmol N kg-1 ChZT. Odczyn (pH) wsadu surowcowego wyznaczony z równowagi kwasowo-zasadowej odpowiadał rzeczywistemu, tj. 7,14.
Rocznik
Strony
11--19
Opis fizyczny
Bibliogr. 23 poz., tab.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, Poland Faculty of Environmental Sciences Department of Environmental Biotechnology
  • University of Warmia and Mazury in Olsztyn, Poland Faculty of Environmental Sciences Department of Environmental Biotechnology
  • University of Warmia and Mazury in Olsztyn, Poland Faculty of Environmental Sciences Department of Environmental Biotechnology
autor
  • University of Warmia and Mazury in Olsztyn, Poland Faculty of Environmental Sciences Department of Environmental Biotechnology
autor
  • University of Warmia and Mazury in Olsztyn, Poland Faculty of Environmental Sciences Department of Environmental Biotechnology
Bibliografia
  • [1] Antonopoulou, G., Gavala, H.N., Skiadas, I.V. & Lyberatos, G. (2012). ADM1-based modeling of methane production from acidified sweet sorghum extract in a two stage process, Bioresource Technology, 106, pp. 10-19.
  • [2] APHA (American Public Health Association) (1992). Standard Methods for the Examination of Water and Wastewater, 18th ed., American Public Health Association, Washington 1992.
  • [3] Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. & Vavilin, V.A. (2002). Anaerobic digestion model No. 1. Scientific and Technical Report No. 13, IWA Publishing, London 2002.
  • [4] Batstone, D.J., Pind, P.F. & Angelidaki, I. (2003). Kinetics of thermophilic anaerobic oxidation of straight and branched chain butyrate and valerate, Biotechnology and Bioengineering, 84, 2, pp. 195-204.
  • [5] Biernacki, P., Steinigeweg, S., Borchert, A. & Uhlenhut, F. (2013). Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine, Bioresource Technology, 127, pp. 188-194.
  • [6] Boubaker, F. & Ridha, B.C. (2008). Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1), Bioresource Technology, 99, pp. 6565-6577.
  • [7] Daniels, L., Hanson, R.S. & Phillips, J.A. (1994). Metabolism. Chemical analysis, in: Methods for General and Molecular Bacteriology, Gerhardt P. & Wood W.A. (Eds.), American Society for Microbiology, Washington 1994.
  • [8] Gilroyed, B.H., Reuter, T., Chu, A., Hao, X., Xu, W. & McAllister, T.A. (2010). Anaerobic digestion of specifi ed risk materials with cattle manure for biogas production, Bioresource Technology, 101, 15, pp. 5780-5785.
  • [9] Girault, R., Bridoux, G., Nauleau, F., Poullain, C., Buffet, J., Steyer, J.P., Sadowski, A.G. & Béline, F. (2012). A waste characterization procedure for ADM1 implementation based on degradation kinetics, Water Research, 46, 13, pp. 4099-4110.
  • [10] Girault, R., Steyer, J.P., Zaher, U., Sadowski, A.G., Nopens, I., Béline, F., Żak, A., Kujawski, O., Holm, N.C. & Roenner- Holm, S.G.E. (2010). Influent fractionation and parameter calibration for ADM1: Lab-scale and full-scale experiments. 2nd IWA/WEF Wastewater Treatment Modelling Seminar, WWTmod, Conference Proceedings, Québec, Canada, 28-30 March 2010, pp. 171-182.
  • [11] Koch, K., Lübken, M., Gehring, T., Wichern, M. & Horn, H. (2010). Biogas from grass silage - Measurements and modeling with ADM1, Bioresource Technology, 101, 21, pp. 8158-8165.
  • [12] Koch, K., Wichern, M., Lübken, M., Horn, H. (2009). Mono fermentation of grass silage by means of loop reactors, Bioresource Technology, 100, 23, pp. 5934-5940.
  • [13] Lübken, M., Wichern, M., Schlattmann, M., Gronauer, A. & Horn, H. (2007). Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops, Water Research, 41, 18, pp. 4085-4096.
  • [14] Lyseng, B.C., Bergland, W., Botheju, D., Haugen, F. & Bakke, R. (2012). Biogas reactor modelling with ADMI, Telemark University College, Porsgrunn 2012.
  • [15] Myint, M., Nirmalakhandan, N. & Speece, R.E. (2007). Anaerobic fermentation of cattle manure: Modeling of hydrolysis and acidogenesis, Water Research, 41, 2, pp. 323-332.
  • [16] PN-EN ISO 13906:2009. Animal feeding stuffs - Determination of acid detergent fibre (ADF) and acid detergent lignin (ADL) contents.
  • [17] Ramirez, I., Mottet, A., Carrère, H., Déléris, S., Vedrenne, F. & Steyer, J.P. (2009). Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge, Water Research, 43, pp. 3479-3492.
  • [18] Rosén, C. & Jeppsson, U. (2006). Aspects on ADM1 implementation within the BSM2 framework. Tech. Report no. LUTEDX/ (TEIE-7224)/1-35/(2006). Department of Industrial Electrical Engineering and Automation, Lund University, Lund, Sweden 2006.
  • [19] Schön, M. (2009). Numerical modelling of anaerobic digestion processes in agricultural biogas plants, Dissertation.
  • [20] Souza, T.S.O., Carvajal, A., Donoso-Bravo, A., Peña, M. & Fdz-Polanco, F. (2013). ADM1 calibration using BMP tests for modeling the effect of autohydrolysis pretreatment on the performance of continuous sludge digesters, Water Research, 47, pp. 3244-3254.
  • [21] Wett, B., Schoen, M., Phothilangka, P. Wackerle, F. & Insam, H. (2006). Model based design of an agricultural biogas plant - application of Anaerobic Digestion Model No. 1 for an improved chamber scheme. 7th International symposium on waste management problems in agro-industries, Amsterdam, 27-29 September, 2006.
  • [22] Wichern, M., Gehring, T., Fischer, K., Andrade, D., Lübken, M., Koch, K., Gronauer, A. & Horn, H. (2009). Monofermentation of grass silage under mesophilic conditions: Measurements and mathematical modeling with ADM1, Bioresource Technology, 100, 4, pp. 1675-1681.
  • [23] Zhou, H., Löffler, D. & Kranert M. (2011). Model-based predictions of anaerobic digestion of agricultural substrates for biogas production, Bioresource Technology, 102, pp. 10819-10828.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c7d9860-35e6-40a2-9505-16958f2a7387
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.