Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background: Osteoarthritis (OA) poses a significant healthcare challenge globally, necessitating the development of effective therapeutic interventions. It is crucial to develop novel drug delivery systems for OA treatment. Aims: This study explores the potential of propolis, saffron extract, and curcumin-loaded zeolitic imidazolate framework-8 (ZIF8) nanoparticles as a treatment modality for OA. The anti-inflammatory and chondroprotective properties of these natural compounds make them promising candidates for OA management. Methods: Through comprehensive in vitro investigations, including scanning electron microscopy (SEM), MTT assays, antiinflammatory assays, cell migration assays, Fourier transform infrared (FTIR) spectroscopy, and release assays, we evaluated the physicochemical and biological characteristics of propolis, saffron extract, and curcumin-loaded ZIF8 nanocarriers. Results: Our Endings demonstrate that these nanocarriers effectively encapsulated the bioactive compounds, exhibited sustained release profiles, and displayed significant anti-inflammatory properties. Notably, propolis-loaded ZIF8 nanocarriers exhibited superior anti-inflammatory activity compared to other formulations. The encapsulation of propolis, saffron extract, and curcumin within ZIF8 nanoparticles holds promise for enhancing their therapeutic efficacy and ensuring targeted delivery to affected joints in OA treatment. Conclusion: This study highlights the potential of nanotechnology-based delivery systems in harnessing the therapeutic benefits of natural compounds for OA management.
Wydawca
Czasopismo
Rocznik
Tom
Strony
41--51
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi,China, 710038
autor
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi,China, 710038
autor
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi,China, 710038
autor
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi,China, 710038
autor
- Department of Orthopedics, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi,China, 710038
Bibliografia
- [1] van den Bosch MH. Osteoarthritis year in review 2020: biology. Osteoarthr Cartil. 2021;29(2): 143-50. doi: 10.1016/j.joca.2020.10.006
- [2] Cai X, Yuan S, Zeng Y, Wang C, Yu N, Ding C. New trends in pharmacological treatments for osteoarthritis. Front Pharmacol. 2021;12: 645842. doi: 10.3389/fphar. 2021.645842
- [3] Li X-Z, Zhang SN. Recent advance in treatment of osteoarthritis by bioactive components from herbal medicine. Chin Med. 2020;15(l): 80. doi: 10.1186/sl 3020-020-00363-5
- [4] Arias C, Vasquez B, Salazar LA. Propolis as a potential therapeutic agent to counteract age-related changes in cartilage: an in vivo study. Int J Mol Sci. 2023;24(18): 14272. doi: 10.3390/ijms241814272
- [5] Boneva B, Marchev A, Amirova K, Ganova P, Georgiev M, Tchorbanov A, Mihaylova N. Crocus sativus extract as a biological agent for disease-modifying gherapy of collagenase-induced mouse model of osteoarthritis. Life (Basel). 2023;13(4): 894. doi: 10.3390/lifel3040894
- [6] Zeng L, Yu G, Hao W, Yang K, Chen H. The efficacy and safety of Curcuma longa extract and curcumin supplements on osteoarthritis: a systematic review and meta-analysis. Biosci Rep. 2021;41(6): BSR20210817. doi: 10.1042/BSR20210817
- [7] Almuhayawi MS. Propolis as a novel antibacterial agent. Saudi J Biol Sci. 2020;27(ll): 3079-3086. doi: 10.1016/j.sjbs.2020.09.016
- [8] Silva H, Francisco R, Saraiva A, Francisco S, Carrascosa C, Raposo A. The cardiovascular therapeutic potential of propolis—a comprehensive review. Biology (Basel). 2021;10(l): 27. doi: 10.3390/biologyl0010027
- [9] Xing B, Li S, Yang J, Lin D, Feng Y, Lu J, Shao Q. Phytochemistry, pharmacology, and potential clinical applications of saffron: a review. J Ethnopharmacol. 2021;281: 114555. doi: 10.1016/j.jep.2021.114555
- [10] Vafaei S, Wu X, Tu J, Nematollahi-Mahani SN. The effects of crocin on bone and cartilage diseases. Front Pharmacol. 2022;12: 830331. doi: 10.3389/fphar.2021 .830331
- [11] Beevers CS, Huang S. Pharmacological and clinical properties of curcumin. Botanies: Targets Therapy. 2011(1): 5-18.
- [12] Henrotin Y, Priem F, Mobasheri A. Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springetplus. 2013;2: 1-9. doi: 10.1186/2193- 1801-2-56
- [13] Bonifacio BV, da Silva PB, Dos Santos Ramos MA, Silveira Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9: 1-15.
- [14] Wang Q, Sun Y, Li S, Zhang P, Yao Q. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Advances. 2020:10(62): 37600-37620. DOI: 10.1039/D0RA07950B
- [15] Cai W, Zhang W, Chen Z. Magnetic Fe3O4@ ZIF- 8 nanoparticles as a drug release vehicle: pH-sensitive release of norfloxacin and its antibacterial activity. Colloids SuifB. 2023;223: 113170. doi: 10.1016/j.colsurfb .2023.113170
- [16] Zhang H, Zhao M, Lin Y. Stability of ZIF-8 in water under ambient conditions. Microporous Mesoporous Mater. 2019;279: 201-210. doi: 10.1016/j.micromes O.2018.12.035
- [17] Xie H, Liu X, Huang Z, Xu L, Bai R, He F, et al. Nanoscale zeolitic imidazolate framework (ZIF)-8 in cancer theranostics: current challenges and prospects. Cancers (Basel). 2022;14(16): 3935. doi: 10.3390/can- cersl4163935‘
- [18] Jin L, Wang S, Chen C, Qiu X, Wang C-C. ZIF-8 nanoparticles induce behavior abnormality and brain oxidative stress in adult zebrafish (Danio rerio). Antioxidants (Basel). 2023;12(7): 1345. doi: 10.3390/antioxl2 071345
- [19] Li Z, Shao Y, Yang Y, Zan J. Zeolitic imidazolate framework-8: a versatile nanoplatform for tissue regeneration. Front Bioeng Biotechnol. 2024;12: 1386534. doi: 10.3389/fbioe.2024.1386534
- [20] Shi L, Wu J, Qiao X, Ha Y, Peng C, Wu R. In situ biomimetic mineralization on ZIF-8 for smart drug delivery. ACS Biomater Sci Eng. 2020:6(8): 4595 4603. doi: 10.1021 /ac sbiomaterials .0c00935
- [21] Chen P, He M, Chen B. Size- and dose-dependent cytotoxicity of ZIF-8 based on single cell analysis. Ecotoxicol Environ Saf. 2020;205: 111110. doi: 10.1016/j .ecoenv.2020.111110
- [22] Yang C, Wen J, Xue Z, Yin X, Li Y, Yuan L. The accumulation and toxicity of ZIF-8 nanoparticles in Corbicula fluminea. J Environ Sci (China). 2023; 127: 91-101. doi: 10.1016/j.jes.2022.03.020
- [23] Ramos A, Miranda JD. Propolis: a review of its anti¬inflammatory and healing actions. J VA TiTD. 2007;13: 697-710. doi: 10.1590/S1678-91992007000400002
- [24] Zulhendri F, Lesmana R, Tandean S, Christoper A, Chandrasekaran K, Irsyam I, et al. Recent update on the anti-inflammatory activities of propolis. Molecules. 2022;27(23): 8473. doi: 10.3390/molecules27238473
- [25] Borrelli F, Maffia P, Pinto L, lanaro A, Russo A, Capasso F, lalenti A. Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia. 2002;73: S53-S63. doi: 10.1016/S0367- 326X(02)00191-0
- [26] Valenzuela-Barra G, Castro C, Figueroa C, Barriga A, Silva X, Las Heras B, et al. Anti-inflammatory activity and phenolic profile of propolis from two locations in Region Metropolitana de Santiago, Chile. J Ethnopharmacol. 2015;168: 37 44. doi: 10.1016/j.jep.2015.03.050
- [27] Hsieh CY, Li LH, Rao YK, Ju TC, Nai YS, Chen YW, Hua KF. Mechanistic insight into the attenuation of gouty inflammation by Taiwanese green propolis via inhibition of the NLRP3 inflammasome. J Cell Physiol. 2019;234(4): 4081 4094. doi: 10.1002/jcp.27204
- [28] Puspasari A, Harijanti K, Soebadi B, Hendarti HT, Radithia D, Ernawati DS. Effects of topical application of propolis extract on fibroblast growth factor- 2 and fibroblast expression in the traumatic ulcers of diabetic Rattus norvegicus. J Oral Maxillcfac Pathol. 2018;22(l): 54-58. DOI: 10.4103/jomfp.JOMFP_82_17
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c7d33ba-a27c-4bef-9b6e-dc45ddea6769