
ARCHIVES OF MECHANICS
Arch. Mech. 74 (2-3), 173–200, 2022, DOI: 10.24423/aom.3955

Reactive solute transport in blood flow
through a permeable capillary

S. DEBNATH1), A. K. ROY2), O. A. BÉG3)

1)Division of Mathematics, School of Advanced Sciences, Vellore Institute
of Technology, Chennai 600127, India

2)Department of Science and Humanities, Tripura Institute of Technology,
Narsingarh, Tripura 799009, India, rk.ashis10@gmail.com (corresponding author)

3)Mechanical Engineering Department, School of Science, Engineering and
Environment (SEE), University of Salford, Manchester, UK

The present analysis discusses the solute transport process in a steady 2D
(axial and radial) laminar flow of blood through a permeable, finite length capillary.
Blood is treated as a homogeneous Newtonian fluid and the solute is absorbed at the
capillary wall with a linear irreversible reaction rate. The velocity profile is obtained
by a regular perturbation technique, whereas the transport coefficients depicted by
the Gill generalized dispersion model are solved numerically. A number of different
scenarios are considered, namely transport with no-reaction, weak absorption, strong
absorption, low filtration or high filtration, etc. In the initial stages, the temporal
behaviour of the dispersion coefficient is identical to those cases when there is no
radial velocity. For the combined effect of radial and axial velocities, however, the
dispersion coefficient is lower for a high absorption rate than for a weak absorption
rate. Diffusion is accelerated with higher values of filtration coefficient. Owing to
the opposite effects of radial diffusion and radial velocity, the solute particles require
more time to reach the steady state. The analysis finds applications in, for example,
reactive nutrient and pharmacological transport in capillary hemodynamics.
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1. Introduction

One of the most vital fluids in the body is blood [1] which has nu-
merous critical functions, the most important of which is to provide oxygen and
nutrients to every living cell and to remove various toxic products from each
cell. This function is performed by transporting various components of blood
across a capillary wall and into the surrounding tissue, as mentioned earlier.
The micro-circulation constitutes that component of the circulation system fea-
turing vessels with extremely small diameters, typically less than 150 microns.
It includes a number of microcirculatory vessels such as arterioles, capillaries
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and venules (capacitance vessels) which together enable many vital functions to
be performed including regulation of tissue perfusion, blood-tissue exchange and
tissue blood volume. The capillaries are the site of major exchange between blood
and tissue [2]. Via capillaries, nutrients and other molecules diffuse or are trans-
ported across the capillary wall to sustain life [3]. Capillary walls are made up of
a single layer of endothelial cells and have different shapes and sizes depending
on the tissue in which they are found. In capillary flows, Starling’s hypothesis
is important and implies that the rate of flow per unit area through the wall
surface is proportional to the difference between the pressure of the fluid within
and outside of the capillary [4]. Fung and Zweifach [5] provided an excellent
appraisal of Newtonian blood flow in capillaries considering many important geo-
metric characteristics, boundary conditions and Reynolds number ranges. Many
excellent analytical and numerical investigations have been conducted of cap-
illary blood flows. These studies have examined many different hemodynamic
and geometric aspects including viscosity, hemo-rheology, squeezing of individ-
ual blood cells, capillary networks etc. Barnard et al. [6] studied the axially
symmetric flow of a deformable blood cell in a conduit (capillary) by formulating
a non-linear boundary value problem and showed that parachute geometry cells
arise which do not impinge on the vessel wall. They also observed that ratio
of cell to plasma viscosity is modified when the cell and conduit diameter are of
the same order. Secomb et al. [7] used a lubrication theory model to analyze
the flow of blood cells along a capillary (narrow cylindrical vessel geometry) and
included elastic properties of the red blood cell membrane, including shear and
bending structural characteristics. They noted that apparent viscosity is elevated
with a decrement in flow rate. El-Shahed [8] presented perturbation solutions
of for two-phase Newtonian blood flow in a capillary (a suspension of cells in
plasma), deriving expressions for velocity and pressure distributions within the
tube for a variety of cell concentrations. Fibich et al. [9] developed a continuum
flow model for blood transport in a long, elastic, and permeable capillary, under
external tissue pressure, driven by arteriolar-venular pressure difference. They
included the effects of ultrafiltration due to transmural hydrostatic and osmotic
gradients. They observed that where tissue pressure is high (e.g., in the suben-
docardium), the capillary flow experiences substantial periodic volume changes,
which generate the intramyocardial pumping. They also demonstrated good cor-
relation of the theoretical results for flow structures with epicardial phasic flow
measurements. Soltani and Chen [10] used a finite difference numerical tech-
nique to study the interstitial fluid and blood flow in a porous capillary network
geometry containing solid tumors. They deployed the Darcy-modified Navier–
Stokes equation and considered also intravascular flows, and also considered the
adaptability of the capillary diameter to hemodynamics and metabolic stimuli.
Peyrounette et al. [11] computed the blood flow in a capillary bed, with
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a homogenized continuum porous medium approach. They simulated the larger
arteriolar and venular trees as a network of interconnected tubes and evaluated
accurately the pressure gradients arising in the capillaries connected to arte-
rioles or venules. Motivated by clinical applications in electrophoretic haemo-
tology, Tripathi et al. [12] investigated the unsteady electro-kinetic peristaltic
transport of blood in cylindrical finite length capillaries. They used a Newto-
nian lubrication model and the Debye–Hückel linearization (wall zeta potential
greatly less than 25 mV) and computed the influence of inverse Debye length)
and the Helmholtz–Smoluchowski velocity on the axial velocity, pressure gradi-
ent, volumetric flow rate, local wall shear stress and bolus trapping patterns.
Many other excellent works (Pozridikis [13], Fedosov et al. [14], Boryczko
et al. [15], McWhirter et al. [16], Durrant and Mccammon [17]) on capillary
blood flows are also available in the scientific literature.

Mechanistic studies of fluid flow across the capillary wall are important for
understanding metabolism [18]. Such transport involves the solute dispersion
(e.g., glucose, amino acids, lactic acids and various drug molecules transport in
such a context). Dispersion and mass transport in capillary blood flows are fun-
damental to a number of clinical applications including the evaluation of drug
concentration-time profiles in cerebral pharmacology where the drug is subject to
distributional and elimination processes including bulk flow of the cerebrospinal
fluid (CSF), binding and metabolism, diffusion, bulk flow of the brain extracel-
lular fluid (ECF) and extra-intracellular exchange. Other applications in which
mass transport in capillary hemodynamics arises include oxygen transport in
cerebro-capillary networks [19], hematological bioprocessing [20], the spreading
of tracer particles in high hematocrit blood [21], nutrient (e.g., protein) trans-
port in the capillary-tissue exchange system [22], glycocalyx-lined capillaries in
cardiac fluid mechanics [23] and potassium fate in skeletal muscles [24]. Solute
transport is achieved via several mechanisms including convection and axial and
radial diffusion. As a result, the effective diffusion coefficient (which accounts for
both the effects) or the dispersion coefficient, is one of the crucial factors in the
solute transport process as it is typically a few orders of magnitude greater than
that due to convection. Taylor [25] in his pioneering study, emphasized that
at a developed state, the dispersion of a solute along the tube can be treated
such that the center of the slug travels with the cross-sectional mean speed of
flow (advection velocity), and the slug is diffused with an augmented effective
diffusivity (dispersion coefficient) which is a function of the molecular diffu-
sivity and advection velocity. The Taylor dispersion model has been extended
and significantly refined by many other authors. The most prominent of these
was [26] Aris’ work, which included an axial diffusion term to analyse the dis-
persion process by means of statistical parameters of the solute concentration
distribution. There are many articles (Mazumder and Das [27], Mazumder
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and Mondal [28], Mazumder and Paul [29], Debnath et al. [30–34], Roy
et al. [35–37], Zhang et al. [38], Li et al. [39], Debnath and Ghoshal [40],
Guan et al. [41]) considered Aris’s method and discussed the diffusion process
with the help of statistical moments. Gill [42] further proposed an alternative
approach for finding the transport coefficients using a series expansion tech-
nique. The Gill model is known as the generalised dispersion model and has
been frequently used in many studies (Sarkar and Jayaraman [43], Nagarani
et al. [44], Ng and Rudraiah [45], Paul and Ng [46], Jiang et al. [47], Deb-
nath et al. [48, 49], Rana and Murthy [50, 51], Jiang and Chen [52], Roy
and Shaw [53], Guo et al. [54]) under several environments. To understand the
long-time behaviour of the dispersion coefficient, many authors (Ng [55], Wu
and Chen [56], Roy et al. [57]) have deployed the homogenization technique. In
a recent work, Rana and Murthy [58] have elaborated the dispersion due to the
periodic flow of non-Newtonian fluid in a conduit. They have used the general-
ized dispersion technique and solved the transport coefficients for all times. Very
recently, Roy et al. [59] have investigated the reactive diffusion and dispersion
in permeable vessels with quadratic porous drag (Forchheimer) effects. Other
studies on dispersion in blood flows include Roy and Bég [60] (for transient
dispersion in stratified Newtonian/micropolar rheological biofluids), Roy and
Shaw [53] (who described detailed simulations of drug dispersion in unsteady
blood flow through a micro-vessel with wall absorption with a two-fluid rheo-
logical formulation), Das et al. [61] (on solute dispersion through the Casson
fluid flowing in a stenotic tube having an absorptive wall), etc. Recently, Wang
et al. [62] have studied on the dispersion process of gyrotactic microorganisms
suspended in a horizontal Poiseuille flow, which is also relevant to biomedical
transport phenomena.

The solution of the equation for the second order term in the Gill series expan-
sion provides the exact formula for the Taylor dispersion coefficient. Furthermore,
to realistically appraise solute transport between capillaries and surrounding tis-
sues, the classic Taylor model is restricted to very low Péclet numbers. A more
comprehensive approach is required to accurately characterize the dispersion of
solute, e.g., pharmacological agents, glucose, albumin etc, in the capillary, at
any Péclet number. In capillary hemodynamics with solute dispersion, the ex-
change and advection coefficients play an important role and must be included
to provide a more comprehensive appraisal of transport characteristics. This is
the motivation for the present study, which aims to investigate the solute disper-
sion in a permeable blood vessel, with a generalized dispersion model. Blood is
considered to be a Newtonian fluid which is feasible for high shear stress circu-
latory flows. Unlike earlier studies (Chu et al. [63], Nakad et al. [64]) of solute
dispersion in 2-D flow, the present mathematical model enables a more compre-
hensive and refined assessment of the dispersion process in hemodynamics. Also,
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due to consideration of the endothelium layer encircling the blood vessel, a new
parameter, viz., the filtration coefficient, appears in the study naturally, which
affects all the transport coefficients.

2. Mathematical formulation

Consider an amount of chemically active solute (e.g., pharmacological agent)
of mass, Q∗, which is injected in the bloodstream through a permeable capillary
of radius R∗ with finite length 2L∗. The physical model is shown in Fig. 1.

Fig. 1. Axisymmetric rigid permeable capillary blood flow and dispersion model.

Due to the complexity of blood composition in capillary flows, the following
assumptions are invoked to enable a simulation of the transport of solute in
capillary blood flow:

(i) The capillary tube geometry is cylindrical vessel, which is straight and
rigid with uniform cross-section.

(ii) The capillary wall is permeable and has a permeability which follows Star-
ling’s law.

(iii) Blood is assumed to be a homogeneous, incompressible, Newtonian fluid
with constant density ρ∗ and viscosity µ∗. Though, blood exhibits a non-
Newtonian behaviour at a low shear rate for small diameter arteries (Long
et al. [65], Goldsmith and Skalak [66]); however, the prescription of
Newtonian behaviour of blood is also adequate for high shear rate flow
through larger arteries (Tu and Deville [67], Ponalagusamy [68]).

(iv) The flow is steady, laminar and axially symmetric.
(v) The wall slip is constant.
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(vi) The end effects are neglected.
(vii) The solute is completely miscible and its molecular diffusivity is constant.

Also, it undergoes a first-order chemical reaction at the capillary wall,
which is representative of drugs (pharmacological agents).

2.1. Governing equations

Implementing the above approximations, the momentum equations which
govern the flow of blood may be shown to reduce from the Navier–Stokes equa-
tions, in a cylindrical coordinate system (r∗, z∗) to:

∂u∗

∂z∗
+
∂v∗

∂r∗
+
v∗

r∗
= 0,(2.1)

ρ∗
[
u∗
∂u∗

∂z∗
+ v∗

∂u∗

∂r∗

]
= −∂p

∗

∂z∗
+ µ∗

[
∂2u∗

∂z∗2
+
∂2u∗

∂r∗2
+

1

r∗
∂u∗

∂r∗

]
,(2.2)

ρ∗
[
u∗
∂v∗

∂z∗
+ v∗

∂v∗

∂r∗

]
= −∂p

∗

∂r∗
+ µ∗

[
∂2v∗

∂z∗2
+
∂2v∗

∂r∗2
+

1

r∗
∂v∗

∂r∗
− v∗

r∗2

]
,(2.3)

here z∗ and r∗ are representing the axial and radial coordinates, p∗(r∗, z∗) is
the constant pressure, u∗(r∗, z∗) and v∗(r∗, z∗) are the axial and radial velocity
components for the blood flow; also, due to the axial symmetry of the flow the
velocity component in the azimuthal direction is omitted.

The unsteady two-dimensional convection–diffusion equation for the trans-
port of a reactive solute of concentration C∗ can be written as:

(2.4)
∂C∗

∂t∗
+ u∗

∂C∗

∂z∗
+ v∗

∂C∗

∂r∗
= D

∂2C∗

∂z∗2
+
D

r∗
∂

∂r∗

(
r∗
∂C∗

∂r∗

)
,

here, t∗ denotes time and D is the molecular diffusivity of the solute which is
assumed to be constant.

2.2. Initial and boundary conditions

(i) At the boundary (wall) of the cylindrical capillary, the axial and radial
velocities are as follows:

(2.5) u∗ = u∗s, v∗ = k(p∗ − α) at r∗ = R∗,

here u∗s is the slip velocity. Owing to the fact that due to permeability of the
capillary wall, consideration of the no-slip condition at the wall may not be valid,
the present study on blood flow through a capillary segment has been carried
out by paying due attention to slip-velocity at the capillary wall. The boundary
condition for the radial velocity v∗ follows Starling’s law, which states that the
rate of flow per unit area of the wall surface is proportional to the difference in
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fluid pressure inside (p∗) and outside (α) the capillary ; k is the capillary filtration
coefficient and is proportional to the capillary wall permeability and the filterable
area. The pressure outside the artery is further expressed as α = Π−Πi+pi; Π is
the osmotic plasma protein pressure; pi and Πi are, respectively the hydrostatic
interstitial fluid pressure and osmotic pressure of the protein in the interstitial
fluid [69].

Again, the solute is irreversibly and linearly absorbed at the wall with the
rate constant Γ∗, and hence:

(2.6)
∂C∗

∂r∗
= −Γ∗C∗ at r∗ = R∗.

(ii) Due to the symmetry condition, at the center-line of the capillary we
have :

(2.7)
∂u∗

∂r∗
= 0,

∂C∗

∂r∗
= 0 at r∗ = 0.

The transverse velocity is zero at the center, thus

(2.8) v∗ = 0 at r∗ = 0.

(iii) At the left end (entry) of the capillary i.e., at the axial distance z∗ = −L∗,
the average pressure (p) is zero, whereas at the opposite end (exit), average
pressure is given by:

(2.9) p =
P0 − pi
α

at z∗ = L∗,

where P0 is the mean pressure over the cross-section of the blood vessel (capil-
lary).

(iv) The solute is released instantaneously uniformly over the cross- section
of the capillary and localized near at z∗ = 0, thus

(2.10) C∗ =
Q∗

πR∗2
δ(z∗) at t∗ = 0,

where δ is the Dirac-delta function.

The asterisk ‘∗’ over the coordinates and on the physical parameters denotes
their dimensional form. Proceeding with the analysis, we next derive the dimen-
sionless form of the above equations via an appropriate set of scaling variables.

2.3. Dimensionless form of equations

Let us consider the following dimensionless quantities:

(2.11)
t =

Dt∗

R∗2
, r =

r∗

R∗
, z =

z∗

L∗
, λ =

R∗

L∗
, u =

u∗

uc
,

v =
λv∗

uc
, p =

p∗ − pi
α

, C =
C∗

C0
,
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where, uc = αR∗λ/µ∗ is characteristic velocity and C0 is the reference concen-
tration.

By virtue of Eq. (2.11), the dimensionless forms of Eqs. (2.1)–(2.3) emerge
as:

λ2∂u

∂z
+
∂v

∂r
+
v

r
= 0,(2.12)

Re

(
λ2u

∂u

∂z
+ v

∂u

∂r

)
= −∂p

∂z
+ λ2∂

2u

∂z2
+
∂2u

∂r2
+

1

r

∂u

∂r
,(2.13)

Re

(
λ2u

∂v

∂z
+ v

∂v

∂r

)
= −∂p

∂r
+ λ2∂

2v

∂z2
+
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
,(2.14)

together with the boundary conditions:

u = us, v = λ2κ

(
p+

pi
α− 1

)
at r = 1,(2.15a)

∂u

∂r
= 0, v = 0 at r = 0,(2.15b)

p = 0, at z = −1,(2.15c)

p =
P0 − pi
α

at z = 1,(2.15d)

here λ is the ratio of radius to length of the capillary, Re = ρ∗L∗uc/µ
∗ is the

Reynolds number and κ = k/λ2αuc is the filtration coefficient. It can be assumed
that O(λ2) = O(κ).

Using Eq. (2.11), we have the dimensionless form of the advection diffusion
(solute concentration) equation (Eq. (2.4)):

(2.16)
∂C

∂t
+ λPeu(r, z)

∂C

∂z
+

1

λ
Pe v(r, z)

∂C

∂r
= λ2∂

2C

∂z2
+

1

r

∂

∂r

(
r
∂C

∂r

)
.

The initial and boundary conditions for the solute concentration become:

C(0, r, z) = λδ(z),(2.17)

∂C

∂r
= 0 at r = 0,(2.18a)

∂C

∂r
= −ΓC at r = 1.(2.18b)

Here, Pe = ucR
∗/D is the Péclet number, which measures the relative charac-

teristic time of the diffusion process to the convection process and Γ = Γ∗R∗ is
the irreversible reaction rate constant.
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3. Solution techniques

3.1. Velocities and pressures

To solve the continuity and momentum Eqs. (2.12)–(2.14) subject to the
boundary conditions (2.15), a regular perturbation technique is followed where
λ2 ∼ O(ε) is the perturbation parameter. Let us consider the solution of pres-
sure (p(r, z)), axial velocity (u(r, z)) and transverse velocity (v(r, z)) with the
following forms:

(3.1)


u = u0 + λ2u1 + λ4u2 +O(λ6),

v = v0 + λ2v1 + λ4v2 +O(λ6),

p = p0 + λ2p1 + λ4p2 +O(λ6).

Using Eq. (3.1) in the momentum Eqs. (2.12) – (2.14), we have:

Zeroth-order terms:

∂v0

∂r
+

1

r
v0 = 0,(3.2)

Re

(
v0
∂u0

∂r

)
= −∂p0

∂z
+
∂2u0

∂r2
+

1

r

∂u0

∂r
,(3.3)

Re

(
v0
∂v0

∂r

)
= −∂p0

∂r
+
∂2v0

∂r2
+

1

r

∂v0

∂r
− v0

r2
,(3.4)

the associated boundary conditions:

u0 = us, v0 = 0 at r = 1,(3.5a)
∂u0

∂r
= 0, v0 = 0 at r = 0,(3.5b)

p0 = 0, at z = −1,(3.5c)

p0 =
P0 − pi
α

at z = 1.(3.5d)

Solving the Eqs. (3.2–3.4), using the boundary conditions Eqs. (3.5a)–(3.5d),
gives:

v0 = 0,(3.6a)
p0 = p0(z),(3.6b)

u0 = −1

4

dp0

dz
(1− r2) + us.(3.6c)
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First-order terms:
Considering v0 = 0 from Eq. (3.6a), the first order correction terms can be

written as:
∂u0

∂z
+
∂v1

∂r
+
v1

r
= 0,(3.7)

Re

(
u0
∂u0

∂z
+ v1

∂u0

∂r

)
= −∂p1

∂z
+
∂2u0

∂z2
+
∂2u1

∂r2
+

1

r

∂u1

∂r
,(3.8)

0 = −∂p1

∂r
+
∂2v1

∂r2
+

1

r

∂v1

∂r
− v1

r2
.(3.9)

The boundary conditions are:

u1 = 0, v1 = κ

(
p0 +

pi
α
− 1

)
at r = 1,(3.10a)

∂u1

∂r
= 0, v1 = 0 at r = 0,(3.10b)

p1 = 0 at z = ±1.(3.10c)

Using Eq. (3.6c) in Eq. (3.7) together with boundary condition (3.10b), we have
the solution for v1 as:

(3.11) v1 =
1

16

d2p0

dz2
(2r − r3).

Now using the Eq. (3.11) in Eq. (3.10a) yields the solution for p0(z), viz:

(3.12) p0(z) = C1e
4
√
κ z + C2e

−4
√
κ z + κ

(
1− pi

α

)
.

Here,

C1 =
1

2 sinh(8
√
κ)

{(
P

α
− pi
α

)
e4
√
κ + 2κ

(
pi
α
− 1

)
sinh(4

√
κ)

}
,

C2 =
1

2 sinh(8
√
κ)

{
−
(
P

α
− pi
α

)
e−4
√
κ + 2κ

(
pi
α
− 1

)
cosh(4

√
κ)

}
.

Finally, the zeroth-order solutions for v0, p0 and u0 are obtained from Eq. (3.6)
by using Eq. (3.12) as follows:

v0 = 0,(3.13a)

p0 = p0(z) = A(z) + κ

(
1− pi

α

)
,(3.13b)

u0 = −
√
κ(1− r2)B(z) + us,(3.13c)

where, A(z) = C1e
4
√
κ z + C2e

−4
√
κ z, and B(z) = C1e

4
√
κ z − C2e

−4
√
κ z.
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Again using Eq. (3.13b) the expression for v1(r, z) is obtained through
Eq. (3.11) as:

(3.14) v1 = κ(2r − r3)(C1e
4
√
κ z + C2e

−4
√
κ z).

Now, it is possible to determine the solutions for p1(r, z) from Eq.(3.9) as we
already have v1 in Eq. (3.14). This gives:

(3.15) p1 = −4κr2(C1e
4
√
κ z + C2e

−4
√
κ z) + F1(z).

Using u0, v1 and p1 in Eq. (3.8), we have the solution for u1 with boundary
conditions (3.10a, b))

u1 = ABReκ3/2

(
1− r4

4
− 1− r6

18

)
+ 2Bκ3/2(1− r4)(3.16)

− AReusκ

4
(1− r4)− X(z)

4
(1− r2),

where X(z) = F ′1(z) + 16Bκ3/2 − 4 ReAusκ+ 4 ReABκ3/2.
In Eqs. (3.15) and (3.16) there is a common unknown function F1(z). To find

this the continuity equation for the second order approximation in the pertur-
bation series is employed

(3.17)
∂u1

∂z
+
∂v2

∂r
+
v2

r
= 0.

The relevant boundary conditions are:

v2 = p1 at r = 1,(3.18a)
v2 = 0 at r = 0.(3.18b)

The solution of Eq. (3.17) with the boundary condition (3.18b) gives:

v2(r, z) = −E Reκ2

[
1

3
(3r − r5)− 1

18
(4r − r7)

]
− 4Aκ2

3
(3r − r5)(3.19)

+
BReusκ

3/2

6
(3r − r5) +

X ′(z)

16
(2r − r3),

where E = C2
1e

8
√
κ z+C2

2e
−8
√
κ z, and X ′(z) = F ′′1 (z)+64Aκ2−16 ReBusκ

3/2 +
32 ReEκ2.

Again using Eq. (3.19) in Eq. (3.18a), we have the differential equation for
F1(z) in the following form:

(3.20) F ′′1 (z)− 16F1(z) =
32

3
ReusBκ

3/2 − 24 ReEκ2 − 64

3
Aκ(κ+ 3).
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The solution of F1(z) is obtained from Eq. (3.20) as follows:

F1(z) = B1e
4z +B2e

−4z +
2κ3/2

3(κ− 1)
ReusB(3.21)

− 3κ2

2(4κ− 1)
ReE − 4κ(κ+ 3)

3(κ− 1)
A.

Here B1 and B2 are arbitrary constants. Now, Eq. (3.21) is again used in Eq.
(3.15), so the expression for p1 is modified and takes the form:

p1(r, z) = −4Aκr2 +B1e
4z +B2e

−4z +
2κ3/2

3(κ− 1)
ReusB(3.22)

− 3κ2

2(4κ− 1)
ReE − 4κ(κ+ 3)

3(κ− 1)
A.

To obtain the arbitrary constants, the cross-sectional average of p1 is evaluated
to make use of the boundary conditions (3.10c). Accordingly, the values of B1

and B2 are found to be:

B1 =
1

sinh (8)

[
2κ(5κ+3)

3(κ−1)
{C1 sinh (4(

√
κ+1))−C2 sinh (4(

√
κ−1))}(3.23)

− 2κ3/2

3(κ−1)
Reus{C1 sinh (4(

√
κ+1))+C2 sinh (4(

√
κ−1))}

+
3κ2

2(4κ−1)
Re{C2

1 sinh (4(2
√
κ+1))−C2

2 sinh (4(2
√
κ−1))}

]
,

B2 =
1

sinh (8)

[
2κ(5κ+3)

3(κ−1)
{C2 sinh (4(

√
κ+1))−C1 sinh (4(

√
κ−1))}(3.24)

+
2κ3/2

3(κ−1)
Reus{C1 sinh (4(

√
κ−1))+C2 sinh (4(

√
κ+1))}

+
3κ2

2(4κ−1)
Re{C2

2 sinh (4(2
√
κ+1))−C2

1 sinh (4(2
√
κ−1))}

]
.

Hence, by using the constant values B1 and B2 from Eqs. (3.23) and (3.24), the
complete solution for F1 can be obtained from Eq. (3.21), which is used further
to get the velocity distribution u1 from Eq. (3.16). In the present problem we
have considered the axial and radial velocities up to first-order approximation of
the perturbation series. Due to the smaller value of the perturbation parameter,
the higher order terms in perturbation series are neglected. Hence, the dispersion
theory is based on a two-dimensional flow in a permeable capillary. Specifically,
this is the novelty of the present work, since the vast majority of other studies



Reactive solute transport in blood flow. . . 185

of the Taylor dispersion do not consider two-dimensional flow field for small and
moderate times. From the velocity distributions one can see that the flow is
characterized by the following three parameters: ratio of radius to length of the
capillary λ, the Reynolds number Re and the filtration coefficient κ, respectively.
Owing to the consideration of wall permeability, the slip condition is assumed
and is denoted by us. Now, for us = 0, λ → 0 and κ → 0, zeroth order term
clearly reduces to the Poiseuille flow. Also, one can see the zeroth order terms
are independent of the Reynolds number. In the upcoming section the axial and
radial velocities in Eq. (2.16) are replaced by respective axially average velocity,
without violating the overall effect of the convection.

3.2. Solute concentration

Now to solve the convection-diffusion equation (2.16) the generalized disper-
sion technique of Gill [42] is used. Accordingly, the expansion of concentration
C(t, r, z) can be written as:

(3.25) C(t, r, z) =

∞∑
k=0

fk(t, r)
∂kCm
∂zk

,

where fk’s are the function of t and r to be determined, and Cm(t, z) is the
cross-sectional mean concentration distribution which is defined as follows:

(3.26) Cm = 2

1∫
0

Cr dr.

By substituting Eq. (3.25) in Eq. (2.16), the equation for the cross-sectional
mean concentration can be written as:

(3.27)
∂Cm
∂t

=

∞∑
k=0

Mk(t)
∂kCm
∂zk

.

For a special case, a particular situation of this Eq. (3.27) is equivalent to the
classical Taylor dispersion model. In Eq. (3.27) theMk’s represent various trans-
port coefficients. According to [42], first three transport coefficients are of prime
interest, and so the series is truncated up to the 3rd term. This yields:

(3.28)
∂Cm
∂t

= M0(t) +M1(t)
∂Cm
∂z

+M2(t)
∂2Cm
∂z2

,

where

M0 = −2Γf0(1, t)− 2Pe

λ

1∫
0

r〈v〉z
∂f0

∂r
dr,(3.29a)
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M1 = −2Γf1(1, t)− 2λPe

1∫
0

r 〈u〉zf0(r, t) dr − 2Pe

λ

1∫
0

r〈v〉z
∂f1

∂r
dr,(3.29b)

M2 = λ2 − 2Γf2(1, t)− 2λPe

1∫
0

r〈u〉zf1(r, t) dr − 2Pe

λ

1∫
0

r〈v〉z
∂f2

∂r
dr.(3.29c)

Here, 〈u〉z and 〈v〉z are the cross sectionally average axial and radial velocity,
and 〈·〉 =

∫ 1
−1(·) dz.

The coefficient M0 is known as the exchange coefficient, M1 is the advection
coefficient, andM2 is the dispersion coefficient. To understand the transport pro-
cess further, we will see the influence of velocity profiles together with the effect
of various parameters onM0,M1 andM2. It is evident that generalized dispersion
technique of Gill enables the analysis of the diffusion process in a more precise
way. It is also apparent that Eq. (3.29) is coupled with Eq. (3.25) which features
the fk’s; the latter can be obtained by substituting Eq. (3.25) in Eq. (2.16). Now,
comparing the coefficients of the longitudinal derivatives, we have:

∂f0

∂t
+M0f0+

(
Pe〈v〉z
λ
− 1

r

)
∂f0

∂r
− ∂

2f0

∂r2
= 0,(3.30a)

∂f1

∂t
+M0f1+(M1+λPe〈u〉z)f0+

(
Pe〈v〉z
λ
− 1

r

)
∂f1

∂r
− ∂

2f1

∂r2
= 0,(3.30b)

∂f2

∂t
+M0f2+(M1+λPe〈u〉z)f1+(M2−λ2)f0(3.30c)

+

(
Pe〈v〉z
λ
− 1

r

)
∂f2

∂r
− ∂

2f2

∂r2
= 0.

The associated initial conditions are:

(3.31) fk(t = 0, r) =

{
λ for k = 0.

0 for k = 1, 2, . . . .

The appropriate boundary conditions are:

(3.32)
∂fk
∂r

=

{
0 at r = 0,
−Γfk at r = 1,

where k = 0, 1, 2.
As Eqs. (3.29) and (3.30) are coupled with each other, the analytical solu-

tion may not be amenable. Thus, a reliable numerical method, namely Crank-
Nicolson’s finite difference implicit scheme has been followed to solve the system
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of equations. The details of the numerical approach are discussed in the Ap-
pendix. In the next section, the validity of the numerical scheme for the present
model, graphical plots are presented with a detailed elaboration of the compu-
tations conducted.

4. Results and discussion

The present study analyses the transport of reactive solute by means of ex-
change, advection and dispersion coefficients, for blood flow through a permeable
capillary. A first-order irreversible reaction is also present at the wall. Consid-
ering both the axial and radial velocities is of the prime interest in this work.
Due to the consideration of the radial velocity component, the filtration coef-
ficient may control the solute spreading process. The velocity expressions have
been derived by the perturbation method and the transport coefficients are com-
puted via the finite difference Crank-Nicolson implicit method. Now, to verify
the accuracy of the numerical scheme we examine the effect of axial velocity on
the transport processes, for the special scenario when there is no radial velocity,
i.e., λ → 0 (capillary radius becomes vanishingly small) and κ → 0 (no filtra-
tion coefficient) and compare with earlier studies (see Fig. 2). As expected, all
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Fig. 2. Temporal variation of exchange coefficient (−M0), convection coefficient (−M1) and
dispersion coefficient (M2) with the wall absorption rate Γ for fixed values of β1 = 1.39,

β2 = 0.33, Re = 1, us = 0, λ→ 0 and κ→ 0, respectively.
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the three transport coefficients viz., exchange coefficient, advection coefficient
and dispersion coefficient are in excellent agreement with the results reported
by Sankarsubramanium and Gill [70] and Rana and Murthy [58] for the
Newtonian case. Confidence in the present solutions is therefore established.

In order to appraise the influence of the irreversible reaction rate Γ and
the filtration coefficient κ together with the combined effect of radial and axial
velocities on the transport processes, it is assumed that β1 = 1.39, β2 = 0.33,
Re = 0.09, us = 0.05, λ = 0.001 and these values are prescribed throughout the
study. Here, β1=pi/α, ratio of hydrostatic pressure in the interstitial space to
the pressure outside the capillary and β2 = P/α, ratio of the mean pressure over
the cross-section at the capillary end to the pressure outside the capillary. The
results have been evaluated for five different situations as listed in Table 1.

Table 1. Cases and values of controlling parameters deployed in the present
study.

Case Γ κ Remark
I 0 0.1 (—) No reaction
II 0.08 0.3 (- - -) Weak absorption
III 1 0.3 (—) Strong absorption
IV 0.3 0.08 (- - -) Low filtration coefficient
V 0.3 1.2 (—) High filtration coefficient

The exchange coefficient evaluates the speed of transport of chemically active
solute towards the reactive wall. It is well known from the study of Sankara-
subramanian and Gill [70] that the exchange coefficientM0 occurs due to the
presence of chemical reaction at the wall. Also, it was found that M0 is inde-
pendent of an axial component of velocity. Nevertheless, it is important to note
from Eq. (3.29a), that the exchange coefficient is dependent on the irreversible
wall reaction rate and the radial velocity, but not of the axial velocity.

Figure 3 displays the variation of negative exchange coefficient with respect
to time for the Cases I to V. It can be seen for the Case I, i.e., ‘no reaction’, that
the value of −M0 attains the steady state much faster than the other cases. For
Case II, i.e., weak absorption, −M0 takes a relatively small time to reach the
steady state. However, for Cases-III to V initially −M0 decreases, with a sub-
sequent slight increment in magnitude and eventually it resumes a decreasing
trend. Finally, in all the cases the exchange coefficient is depleted to zero except
for Case II. Now, the sudden rise of the exchange coefficient after a small in-
terval of time may be associated with the radial velocity. One can also notice
that, for the case of a strong absorption rate (Case III) the value of the exchange
coefficient noticeably exceeds that computed for Case II, i.e., weak absorption.
This kind of behaviour has also been reported by is also observed by Ng and
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Fig. 3. Temporal variation of exchange coefficient (−M0) for the cases listed in Table 1.

Rudraiah [45]. The chemical absorption rate there exerts a substantial influence
on the exchange coefficient which agrees with clinical observations. Furthermore,
it can be seen that the exchange of solute in between the fluid and solid phases is
enhanced with higher values of the filtration coefficient κ, which again is in agree-
ment with physiological observations [69]. It is also apparent from Fig. 3 that for
Case III, i.e., strong absorption (—) a significant step change arises at very small
times before the eventual steady state is witnessed i.e., there is a dual plateau
structure in the plot. For Case II, (- - -) weak absorption, a constant plateau for
−M0 attains is observed at all times i.e., the steady state is achieved immediately
and sustained. Minimum magnitudes of the negative exchange coefficient −M0

are observed for Case I (no reaction). For Cases IV and V i.e., (- - -) low filtration
coefficient and (—) high filtration coefficient, there is again a dual plateau topol-
ogy. The negative exchange coefficient −M0 is invariant with small time values,
then drops gradually with further elapse of time, and only then is the steady
state distribution achieved. The disparity between negative exchange coefficient
−M0 is only observed in the intermediate range of times between Case IV and
Case V; clearly Case V produces markedly greater magnitudes of the exchange
coefficient in this intermediate time range, due to the greater contribution of the
much stronger filtration (κ = 1.2 for Case V whereas it is very small at κ = 0.08
for the Case IV) to the solutal dispersion process. The impact of filtration is
clearly highlighted, and the inclusion of this effect is strongly justified for more
accurate simulations of dispersion in capillary blood flow.

The advection coefficient, which quantifies the process of spreading of solute
due to the movement of fluid. Unlike the exchange coefficient, from Eq. (3.29b)
it can be seen that the advection coefficient depends on both the velocity com-
ponents, viz., axial and radial velocities. Figure 4 depicts the negative advection
coefficient with respect to time for the list of cases in Table 1. For Case I, −M1

seems to be constant with time, as there is no reaction and the advection speed
solely depends on the average velocity. For the Cases II to V, the advection co-
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Fig. 4. Temporal variation of advection coefficient (−M1) for the cases listed in Table 1.

efficient increases at the initial range [0, 0.5], and then become stable for some
time. However, with further progress in time, the advection coefficient drops
abruptly and become negative before it finally reaches its steady limit. Similar
findings have been observed by Ng and Rudraiah [45] and also Debnath et.
al. [71] although they employed a different chemical formulation (reversible and
irreversible wall reaction). The physical cause could be the radial velocity, which
acts as a reversible like wall reaction and significantly influences the evolution
of the advection coefficient. From Fig. 4 one can see that for Cases III–V, there
is no advection coefficient in long-run. Also, it can be seen that the magnitude
of −M1 is increasing within a small interval of time due to high absorption
as compared to weak absorption, whereas the converse behaviour is computed
with variation in the filtration coefficient. Further, because of a high absorption
rate (Case III) the advection coefficient approaches the steady state much earlier
than for the case of the weak absorption (Case II). Additionally, as the filtration
coefficient κ enhances the advection velocity partially, the advection coefficient
thereby attains the steady state slightly faster for the higher values of κ.

The dispersion coefficient, M2 is the most important parameter for under-
standing the transport of solute in a solvent flowing through a narrow conduit
(capillary) due to both radial diffusion and convection. It measures the dispersion
of a solute pulse injected into the flowing stream. Thus, convection has a strong
impact in the process of solute spreading. The vast majority of previous studies
has considered mostly the influence of an axial velocity component. However, in
the present work we have considered both axial and radial velocities, and their
dependencies on the dispersion coefficientM2 is clearly noticed from Eq. (3.29c).
The fluctuation of the dispersion coefficient over time is depicted in Fig. 5(a) for
the cases mentioned in Table 1. From the figure we can conclude that at the ini-
tial stage [0, 0.5] the temporal behaviour of the dispersion coefficient is identical
to those cases when there is no radial velocity. For the combined effect of radial
and axial velocities, here also the dispersion coefficient is found to be reduced
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Fig. 5. Temporal variation of dispersion coefficient (M2) for the cases listed in Table 1.

in magnitude for a high absorption rate relative to the weak absorption rate
(Cases II and III, respectively). However, inspection of the profiles for Cases IV
and V it can be seen the diffusion processes are accelerated for higher values of
the filtration coefficient, which concurs with clinical observations [69].

Interestingly, as time elapses, a dramatic fall in the dispersion coefficient can
be seen for the Cases III–V [Fig. 5(b)]. This may be due to the consideration of
a radial velocity contribution in the model. At the initial time, axial diffusion
due to axial convection is the dominating cause of dispersion. However, it is
known that after some time, radial diffusion controls the diffusion mechanism.
At the rear end of the cloud, solute particles attempt to enter the centre part of
the solvent flow due to radial diffusion; on the other side radial velocity forces
the solute towards the wall. As a consequence of the opposite behaviour of radial
diffusion and radial velocity, the solute particles require more time to reach the
steady state. More importantly, due to the wall absorption and the filtration
coefficient the solute depletion rate at the front cloud increases as compared
to rear end. Thus, large differences in solute concentration between the trailing
and leading edges may arise manifesting in a maximum value of the dispersion
coefficient. Consequently, the dispersion coefficient will approach negative values
after the turning point. After a long duration, the rate of spreading tends to zero
and solute dispersion is eliminated in the regime.

Figure 6 shows the variation of transport coefficients with the irreversible
wall reaction Γ in the presence of both axial and radial velocities, at a fixed
time t = 10. Figure 6(a) shows that the negative exchange coefficient increases
with increasing irreversible wall reaction, and thereafter a decreasing trend is also
observed until it reaches zero. As Γ becomes sufficiently large, reaction at the wall
consumes material more rapidly, therefore the concentration of solute at the wall
tends to zero. From Fig. 6(b), it can be deduced that the advection coefficient is
a decreasing function of Γ, and this depletion continues until the absorption rate
exceeds the filtration coefficient κ = 0.3. After that the convection coefficient
increases with Γ and finally reaches an equilibrium state. Figure 6(c) clearly
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Fig. 6. Variation of the transport coefficients (−M0, −M1 and M2) with respect to the
absorption rate Γ for fixed value of filtration coefficient κ = 0.3 and t = 10.

shows that, the dispersion coefficient increases with Γ, but only for a critical
range of Γ values. This interval for Γ is dependent on κ = 0.3, such that the
combined effect of Γ and κ increases the diffusivity of the solute. In the later
section of the figure, it is evident that as Γ value exceeds κ, a certain drop ofM2

is induced, and logically after a large Γ is attained, the dispersion coefficient
tends to its steady limit.

The axial distribution of mean concentration is derived from the solution of
Eq. (3.28) with respect to the initial and boundary conditions. This yields the
solution for the solute concentration as:

(4.1) Cm(t, z) =
1

2Pe
√
πχ

exp

(
ξ − z2

1

4χ

)
,

where

ξ(t) =

t∫
0

M0(ζ) dζ,(4.2)

z1(t, z) = z +

t∫
0

M1(ζ) dζ,(4.3)
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and

(4.4) χ(t) =

t∫
0

M2(ζ)dζ.

Here, the axial mean concentration Cm(t, z) is calculated from Eq. (4.1) by
solving Eqs. (4.2) – (4.4) numerically with Simpson’s 1/3 rule [72]. In Fig. 7,
the axial distribution of mean concentration is shown for axial velocity and
(axial + radial) velocities at fixed times t = 0.2 and t = 1. From both figures
we can see that the combined effect of both radial and axial velocities increases
the solute diffusivity as compared to axial velocity alone. It is very important to
note that, at small time the differences of a peak height of Cm is significantly
lower, whereas at time t = 1, the difference is substantial. In other words, one
can say at the large time, both axial and radial velocities can play a major role in
dispersion of solute, which approximates the actual hemodynamic behaviour [69]
more closely than with the simpler Taylor dispersion model.
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Fig. 7. Axial distribution of mean concentration for the fixed values of Γ = 0.3 and κ = 0.3,
at time (a) t = 0.2, (b) t = 1.
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Fig. 8. Axial distribution of mean concentration for the cases listed in Table 1, under the
combined effect of axial and radial velocities, at time (a) t = 1, (b) t = 2.



194 S. Debnath, A. K. Roy, O. A. Bég

Figure 8 shows the axial distribution of mean concentration for the cases
listed in Table 1 under the consideration of both radial and axial velocities. The
results have been plotted for fixed time t = 1 and t = 2, respectively. For Case I,
we can see that the peak height reduces at t = 2, which is obvious. Also, from
Case I and II, it is clear that with an increase of the irreversible reaction rate Γ the
solute diffuses quickly (Fig. 8(a)), and as time increases the peak becomes much
flatter (Fig. 8(b)). Interestingly, as compared to a low filtration coefficient (Case-
IV), the higher filtration coefficient (Case-V) slows down the distribution of mean
concentration in the axial direction. The computed behaviour of the filtration
coefficient κ on solute dispersion is very significant, and certainly physically
viable, as already demonstrated via the earlier graphs showing that increment
in κ produces a negative dispersion coefficient.

5. Conclusions

A theoretical study of reactive solute dispersion in axisymmetric, laminar
flow in a permeable capillary, with a generalized dispersion model has been pre-
sented. Blood has been considered to be a Newtonian fluid which is feasible for
high shear stress circulatory flows. Also, due to consideration of the endothelium
layer encircling the blood vessel, a new parameter, viz., filtration coefficient, has
been considered in the present study, which affects all the transport coefficients.
A regular perturbation method has been implemented to derive velocity and
pressure expressions, whereas the Crank–Nicolson implicit finite difference nu-
merical method has been deployed to compute the transport coefficients (M0 i.e.,
exchange coefficient, M1 i.e., advection coefficient, and M2 i.e., dispersion co-
efficient). Extensive visualization of different transport coefficients and mean
concentrations is presented. The main findings of the present analysis may be
summarized as follows:

(a) Radial velocity has no effect on the qualitative behaviour of the transport
coefficients at the initial stage of the flow. However, at the transient stage
(typically t ≥ 3, though it may appear earlier then t = 3 subject to a different
scenario) an influence of the radial velocity observed clearly.

(b) For Cases III–V all the three-transport coefficients tend to zero eventually
with large elapse in time.

(c) For high absorption all three transport transport coefficients become zero.
(d) The appearance of radial velocity helps to flatten the breakthrough curve

more quickly and become more impactful with a progression in time.
(e) Case I and II demonstrate clearly that with an increase of the irreversible

reaction rate the solute diffuses quickly (Fig. 8(a)), and as time increases the
peak becomes much flatter.
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(f) Compared to a low filtration coefficient (Case IV), the higher filtration co-
efficient (Case V) decelerates the distribution of mean concentration in the
axial direction.

(g) The computed behaviour of the filtration coefficient κ on solute dispersion is
effectively very significant and the inclusion of filtration effects is therefore
warranted in more realistic blood flow and dispersion models.

The Gill decomposition method has been deployed successfully in the cur-
rent study. However, attention has been confined to Newtonian blood flow i.e.,
hemorheology has been ignored. Future studies may consider several non-Newto-
nian blood flow models e.g. Sisko’s viscoelastic model [72], Eringen’s micropolar
model [73] or Reiner–Rivlin differential rate-type viscoelastic models [74]. Ad-
ditionally, the growing popularity of nanoparticles in biomedicine [75, 76] and
consideration of more complex geometries (e.g. capillary bifurcations) provides
an interesting pathway for studying generalized dispersion in nanoparticle-doped
capillary blood flows in pharmacology. Efforts in these directions are under con-
sideration and will be reported imminently.

Appendix. Numerical solution by finite difference method

The finite difference Crank–Nicolson implicit scheme [77] is used to solve
the following coupled equations along with Eqs. (3.31) and (3.32) to get the
transport coefficients Mk(t) (k = 0, 1, and 2).

∂fk
∂t

+M0fk + (M1 + λPe〈u〉z)fk−1 + (M2 − λ2)fk−2(A.1)

+

(
Pe〈v〉z
λ

− 1

r

)
∂fk
∂r
− ∂2fk

∂r2
= 0,

Mk = λ2δk2 − 2Γfk(1, t)− 2λPe

1∫
0

r〈u〉zfk−1(r, t) dr(A.2)

− 2Pe

λ

1∫
0

r〈v〉z
∂fk
∂r

dr,

where, k = 0, 1, 2 and f−1 = f−2 = 0.
The above equations are discretized by dividing the whole domain (0 ≤ r ≤ 1)

into (m− 1) equal grids of length ∆r, where each grid point is indicated by the
index j. Similarly, the time increment is assumed to be ∆t and the corresponding
time grid point is denoted by the index i. Therefore, the variables fk(r, t) and
Mk(t) at each grid point are represented by fk(j, i) and Mk(i) respectively.
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Following the above numerical scheme, the Eq. (A.1) becomes a tri-diagonal
system of linear equations, which are then solved by a Thomas Algorithm. The
scheme is unconditionally stable and by varying the time step and grid spac-
ing, we have assured ourselves of a very good order of accuracy of the results
generated for m = 51, ∆t = 10−5.
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