PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The OAE1a in Cuchía (Early Aptian, Spain): C and O geochemistry and global correlation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
C-isotopes, TOC and O geochemical data from the lower Aptian Cuchía section in the western Basque-Cantabrian basin (BCB) allow an accurate delimitation of the OAE1a-equivalent and its geochemical Menegatti´s segments, a detailed δ13Ccarb correlation with regional and interregional sections, and a high-resolution construction of TOC and bulk-rock δ18Ocarb curves and their interpretation. The δ13Ccarb values range from -2‰ and +4‰ (VPDB). They agree with previous data from the eastern BCB sections (Aralar) confirming the ammonite age of the OAE1a in the Basque-Cantabrian basin: Deshayesites forbesi, Deshayesites deshayesi, and Deshayesites deshayesi-Dufrenoyia furcata transition Zones. Interregional δ13Ccarb correlation with pelagic (Cismon, Italy, and Mid-Pacific Mountains, DSDP Site 463) and neritic (Roquefort-La Bédoule, France) core sections, reveals a common profile of a wide negative excursion characteristic of the OAE1a. It consists of a double trough separated by a flat relative maximum, with two negative spikes in the upper trough of neritic sections. TOC absolute values range from 0.12% to 1.37%. Segments of the TOC curve with persistent low values closely correspond with descending segments of the δ13Ccarb curve, and are attributed to lesser organic productivity in the BCB. Detailed bulk-rock δ18Ocarb data (-5.71‰ to -1.05 ‰ PDB) and variation curve show two main positive O-isotope shifts and three minor positive inflections, within a general negative trend characteristic of the OAE1a. The two major positive shifts correspond to both shallowing upwards sequences and the lowermost can be related to a eustatic sea level fall. Independent interregional correlation of the O-isotope shifts with C-isotopes supports their interpretation as punctuating colder events within a general warming trend.
Słowa kluczowe
Rocznik
Strony
525--543
Opis fizyczny
Bibliogr. 72 poz., rys.
Twórcy
  • Department of Stratigraphy and Palaeontology, Universidad del País Vasco, Facultad de Ciencia y Tecnología, PO Box 644, E-48080, Spain
  • Department of Stratigraphy and Palaeontology, Universidad del País Vasco, Facultad de Ciencia y Tecnología, PO Box 644, E-48080, Spain
autor
  • Natural History Museum of London, Department of Earth Sciences, Cromwell Road, London SW7 5BD, UK
Bibliografia
  • 1. Ando, A., Kaiho, K., Kawahata, H. and Kakegawa, T. 2008. Timing and magnitude of early Aptian extreme warming: Unraveling primary δ18C variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 463–476.
  • 2. Arthur, M.A. and Premoli Silva, I. 1982. Development of widespread organic carbon–rich strata in the Mediterranean Tethys. In: S.O. Schlanger and M.B. Cita (Eds), Nature and Origin of Cretaceous Carbon-Rich Facies, 75–119. Academic Press; London, New York.
  • 3. Arthur, M.A., Brumsack, H.J., Jenkyns, H.C. and Schlanger, S.O. 1990. Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. In: R.N. Ginsburg and B. Beaudoin (Eds), Cretaceous Resources, Events and Rythms, 75–119. Kluwer; Dordrecht.
  • 4. Barron, E.J. and Washington, W.M. 1982. Cretaceous climate: a comparison of atmospheric simulations with the geologic record. Palaeogeography, Palaeoclimatology and Palaeoecology, 40, 103–133.
  • 5. Bottini, C., Cohen, A.S., Erba, E., Jenkyns, H.C. and Coe, A.L. 2013. Osmium-isotope evidence for volcanism, weathering, and ocean mixing during early Aptian OAE 1a. Geology, 40, 583–586.
  • 6. Bottini, C., Erba, E., Tiraboschi, D., Jenkyns, H.C., Schouten, S. and Sinninghe Damsté, J.S. 2015. Climate variability and relationship with ocean fertility during the Aptian Stage. Climate of the Past, 11, 383–402.
  • 7. Collignon, M., Pascal, A., Peybernès, B. and Rey, J. 1979. Faunes d’ammonites de l’Aptien de la règion de Santander (Espagne). Annales de Paléontologie Invertébrés, 65, 139–156.
  • 8. Dumitrescu, M., Brasell, S.C., Schouten, S., Hopman, E.C. and Sinninghe Damsté, J.S. 2006. Instability in tropical Pacific sea-surface temperatures during the early Aptian. Geology, 34, 833–836.
  • 9. Erba, E. 1994. Nannofossils and superplumes: the early Aptian ‘‘nannoconid crisis’’. Paleoceanography, 9, 483–501.
  • 10. Erba, E., Channel, J.E.T., Claps, M., Jones, C., Larson, R., Opdyke, B., Premoli Silva, I., Riva, A., Salvini, G. and Torricelli, S. 1999. Integrated Stratigraphy of the Cismon APTICORE (Southern Alps, Italy): a “reference section” for the Barremian–Aptian interval at low latitudes. Journal of Foraminiferal Research, 29, 371–392.
  • 11. Erba, E., Bottini, C., Weissert, H.J. and Keller, C.E. 2010. Calcareous nannoplankton response to surface-water acidification around oceanic anoxic event 1a. Science, 329 (5990), 428–432.
  • 12. Erba, E., Duncan, R.A., Bottini, C., Tiraboschi, D., Weissert, H., Jenkyns, H.C. and Malinverno, A. 2015. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism. In: Neal, C.R., Sager, W.W, Sano, T. and Erba, E. (Eds), The origin, evolution, and environmental impact of oceanic large igneous provinces. Geological Society of America Special Paper, 511, 271–303.
  • 13. Erbacher, J. and Thurow, J. 1995. A model for a sea-level controlled evolution of mid-Cretaceous black shales and Radiolaria. Europal, 8, 64.
  • 14. Fernández-Mendiola, P.A., García-Mondéjar, J., Millán, M.I. and Owen, H.G. 2010. Three carbonate platform episodes in the Early Aptian of N Spain. 18th International Sedimentological Congress – Mendoza, Argentina, p. 337.
  • 15. Ferreri, V., Weissert, H., D’Argenio, B. and Buonocunto, F.P. 1997. Carbon isotope stratigraphy: a tool for basin to carbonate platform correlation. Terra Nova, 9, 57–61.
  • 16. Feuillée, P. and Rat, P. 1971. Structures et paléogéographies pyrénéo-cantabriques. In: Debyser, J., Le Pichon, X. and Montadert, L. (Eds), Colloque de l’Histoire du Golfe de Gascogne, 2, 1–45, Editions Technip; Paris.
  • 17. García-Mondéjar, J. 1989. Strike-slip subsidence of the Basque-Cantabrian Basin of Northern Spain and its relationship to Aptian-Albian opening of the Bay of Biscay. In: Tankard, A.J. and Balkwill, H.R. (Eds), Extensional tectonics and stratigraphy of the North Atlantic margins. American Association of Petroleum Geologists Memoir, 46, 395–409.
  • 18. García-Mondéjar, J. 1990. The Aptian-Albian carbonate episode of the Basco-Cantabrian Basin (N-Spain): general characteristics, controls, and evolution. In: M.E. Tucker, M.E., Wilson, J.L., Crevello, P.D., Sarg, J.F. and Read, J.F. (Eds), Carbonate Platforms. International Association of Sedimentologists Special Publication, 9, 291–323, Blackwell; Oxford.
  • 19. García-Mondéjar, J., Owen, H.G., Raisossadat, N., Millán, M.I. and Fernández-Mendiola, P.A. 2009. The Early Aptian of Aralar (northern Spain): stratigraphy, sedimentology, ammonite biozonation, and OAE1. Cretaceous Research, 30, 434–464.
  • 20. García-Mondéjar, J., Owen, H.G. and Fernández-Mendiola, P.A. 2015. Early Aptian sedimentary record and OAE1a in Cuchía (Northern Spain): new data on facies and ammonite dating. Neues Jahrbuch für Geologie und Paläontologie, 276, 1–26.
  • 21. Giorgioni, M., Keller, C.E., Weissert, H, Hochuli, P.A. and Bernasconi, S.M. 2015. Black shales-from coolhouse to greenhouse (early Aptian). Cretaceous Research, 56, 716–731.
  • 22. Grötsch, J., Billing, I. and Vahrenkamp, V. 1998. Carbon-isotope stratigraphy in shallow-water carbonates: implications for Cretaceous black-shale deposition. Sedimentology, 45, 623–634.
  • 23. Haq, B.U. 2014. Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58.
  • 24. Haq, B.U., Hardenbol, J. and Vail, P.R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Ch.K. Wilgus, B.S. Hastings, Ch.G.St.C., Kendall, H.W. Posamentier, Ch.A. Ross, and J.C. Van Wagoner (Eds), Sea-level changes – an integrated approach. SEPM Special Publication, 42, 71–108.
  • 25. Heimhofer, U., Hochuli, P.A., Herrle, J.O., Andersen, N. and Weissert, H. 2004. Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (early Aptian, SE France). Earth and Planetary Science Letters, 223, 303–318.
  • 26. Herrle, J.O., Pross, J., Friedrich, O., Kössler, P. and Hemleben, C. 2003. Forcing mechanism for mid-Cretaceous black shale formation: evidence from the upper Aptian and lower Albian of the Vocontian Basin (SE France). Palaeogeography, Palaeoclimatology Palaeoecology, 190, 399–426.
  • 27. Hochuli, P.A., Menegatti, A.P., Weissert, H., Riva, A., Erba, E. and Silva, I.P. 1999. Episodes of high productivity and cooling in the early Aptian Alpine Tethys. Geology, 27, 657–660.
  • 28. Immenhauser, A. 2005. High-rate sea-level change during the Mesozoic: new approaches to an old problem. Sedimentary Geology, 175, 277–296.
  • 29. Jahren, A.H., Arens, N.C., Sarmiento, G., Guerrero, J. and Amundson, R. 2001. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology, 29, 159–162.
  • 30. James, N.P. and Choquette, P.W. 1990. Diagenesis 9. Limestones -the meteoric diagenetic environment. Geoscience Canada Reprint Series, 4, 35–73.
  • 31. Jenkyns, H.C., Schouten-Huibers, L., Schouten, S. and Sinninghe Damsté, J.S. 2012. Warm middle Jurassic-Early Cretaceous high-Latitude sea-surface temperatures from the Southern Ocean. Climate of the Past, 8, 215–226.
  • 32. Jones, C.E. and Jenkyns, H.C. 2001. Seawater strontium isotopes, oceanic anoxic events and sea-floor hydrothermal activity in the Jurassic and Cretaceous. American Journal of Science, 301, 112–149.
  • 33. Keller, C.E., Hochuli, P.A., Weissert, H., Bernasconi, S., Giorgioni, M. and Garcia, T.I. 2011. A volcanically induced climate warming and floral change preceded the onset of OAE1a (Early Cretaceous). Palaeogeography, Palaeoclimatology, Palaeoecology, 305, 43–49.
  • 34. Kemper, E. 1982. Zur Gliederung der Schichtfolge der Apt-Unter Alb. Geologisches Jahrbuch, (A) 65, 21–33.
  • 35. Kunht, W., Moullade, M., Masse J. P. and Erlenkeuser, H. 1998. Carbon isotope stratigraphy of the lower Aptian historical stratotype at Cassis-La Bédoule (SE France). Géologie Méditerranéenne, 25 , 63–79.
  • 36. Kunht, W., Holbourn, A. and Moullade, M. 2011. Transient global cooling at the onset of the early Aptian oceanic anoxic event (OAE) 1a. Geology, 39, 323–326.
  • 37. Larson, R.L. and Erba, E. 1999. Onset of the mid-Cretaceous greenhouse in the Barremian- Aptian: Igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography, 14, 663–678.
  • 38. Lehmann, J., Friedrich, O., Von Bargen, D. and Hemker, T. 2012. Early Aptian bay deposits at the southern margin of the lower Saxony Basin: Integrated stratigraphy, palaeoenvironment and OAE 1a. Acta Geologica Polonica, 62, 35–62.
  • 39. Lorenzen, J., Kunht, W., Holbourn, A., Flögel, S., Moullade, M. and Tronchetti, G. 2013. A new sediment core from the Bedoulian (Lower Aptian) stratotype at Roquefort-La Bédoule, SE France. Cretaceous Research, 39, 6–16.
  • 40. Masse, J.P. 2000. Early Aptian (112-114 Ma). In: Dercourt, J., Gaetani, M., Vrielynck, B., Barrier, E., Biju-Duval, B., Brunet, M.F., Cadet, J.P., Crasquin, S. and Sandulescu, M. (Eds), Atlas Peri-Tethys palaeogeographical maps, pp. 119–127. Gauthier-Villars; Paris.
  • 41. Masse, J.P. and Fenerci-Masse M. 2011. Drowning discontinuities and stratigraphic correlation in platform carbonates. The late Barremian-Early Aptian record of southeast France. Cretaceous Research, 32, 659–684.
  • 42. Maurer, F., Van Buchem, F.S.P., Eberli, G.P., Pierson, B.J., Raven, M.J. and Larsen, P.H. 2012. Late Aptian longlived glacio-eustatic lowstand recorded on the Arabian Plate. Terra Nova, 25, 87–94.
  • 43. Méhay, S., Keller, C.E., Bernasconi, S.M., Weissert, H., Erba, E., Bottini, C. and Hochuli, P.A. 2009. A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis. Geology, 37, 819–822.
  • 44. Menegatti, A., Weissert, H.J., Brown, R.S., Tyson, R.V., André, P, Strasser, A. and Caron, M. 1998. High-resolution δ13C stratigraphy through the Early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography, 13, 530–545.
  • 45. Mengaud, L. 1920. Recherches géologiques dans la Région Cantabrique. Thèse Faculté Science, Paris, 370 pp. Bonnet; Toulouse.
  • 46. Millán, M.I., Weissert, H.J., Fernández-Mendiola, P.A. and García-Mondéjar, J. 2009. Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain). Earth and Planetary Science Letters, 287, 392–401.
  • 47. Millán, M.I., Weissert, H.J., Owen, H., Fernandez-Mendiola, P.A. and García-Mondéjar, J. 2011. The Madotz Urgonian platform (Aralar, northern Spain): Paleoecological changes in response to Early Aptian global environmental events. Palaeogeography Palaeoclimatology Palaeoecology, 312, 167–180.
  • 48. Miller, K.G., Wright, J.D. and Browning, J.V. 2005. Visions of ice sheets in a greenhouse world. Marine Geology, 217, 215–231.
  • 49. Montadert, L., Winnock, E., Deltiel, J.R. and Grau, G. 1974. Continental margins of Galicia-Portugal and Bay of Biscay. In: Burk, C.A. and Drake, C.L. (Eds), The Geology of Continental Margins, pp. 323–342. Springer; Stuttgart.
  • 50. Moullade, M., Bellier, J.P. and Tronchetti, G. 2002. Hierarchy of criteria, evolutionary processes and taxonomic simplification in classification of Lower Cretaceous planktonic foraminifera. Cretaceous Research, 23, 111–148.
  • 51. Moullade, M., Tronchetti, G., Granier, B., Bornemann, A., Kuhnt, W. and Lorenzen, J. 2015. High-resolution integrated stratigraphy of the OAE1a and enclosing strata from core drillings in the Bedoulian stratotype (Roquefort-La Bédoule, SE France). Cretaceous Research, 56, 119–140.
  • 52. Najarro, M., Rosales, I. Moreno-Bedmar J.A., De Gea, G.A., Barrón, E., Company, M. and Delanoy, G. 2011. High resolution chemo- and biostratigraphic records of the Early Aptian oceanic anoxic event in Cantabria (N. Spain): palaeoceanographic and palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 299, 137–158.
  • 53. Olivet, J.L. 1996. La cinématique de la Plaque Ibérique (Kinematics of the Iberian Plate). Bulletin des Centres de Recherche Exploration-Production Elf Aquitaine, 20, 131–195.
  • 54. Pitman, W.C. 1978. Relationship between eustacy and stratigraphic sequences of passive margins. Geological Society of America Bulletin, 80, 1389–1403.
  • 55. Premoli Silva, I., Erba, E., Salvini, G., Locatelli, C. And Verga, D. 1999. Biotic changes in Cretaceous Oceanic Anoxic Events of the Tethys. Journal of Foraminiferal Research, 29, 352–370.
  • 56. Renard, M., de Rafélis, M., Emmanuel, L., Moullade, M., Masse, J.P., Kuhnt, W., Bergen, J. and Tronchetti, G. 2005. Early Aptian δ13C and manganese anomalies from the historical Cassis-La Bédoule stratotype sections (S.E. France): relationship with a methane hydrate dissociation event and stratigraphic implications. Carnets de Géologie/Notebook on Geology, 2005/04 (CG2005), 1–18.
  • 57. Schlanger, W. and Cita, M.B. 1982. Nature and Origin of Cretaceous Carbon-Rich Facies, 229 pp. Academic Press; London, New York.
  • 58. Steuber, Th., Rauch, M., Masse, J. P., Graaf, J. and Malkoc, M. 2005. Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. Nature, 437, 1341–1344.
  • 59. Stoll, H.M. and Schrag, D.P. 1996. Evidence for glacial control of rapid sea level changes in the early Cretaceous. Science, 272, 1771–1774.
  • 60. Symonds, R.B., Rose, W.I., Bluth, G. and Gerlach, T.M. 1994. Volcanic gas studies: methods, results, and applications. In: M.R. Carrol and J.R. Holloway (Eds), Volatiles in Magmas. Mineralogical Society of America. Reviews in Mineralogy, 30, 1–66.
  • 61. Tejada, M.L.G., Suzuki, K., Kuroda, J., Mahoney, J.J., Ohkouchi, N., Sakamoto, S.A. and Tatsumi, Y. 2009. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology, 37, 855–858.
  • 62. Tremolada, F., Erba, E. and Bralower, T.J. 2006. Late Barremian to early Aptian calcareous nannofossil paleoceanography and paleoecology from Ocean Drilling Program Hole 641C (Galicia Margin). Cretaceous Research, 27, 887–897.
  • 63. Wagner, T., Wallmann, K., Stüsser, I., Herrle, J.O., and Hofmann, P., 2007. Consequences of moderate 25,000 yr lasting emission of light CO2 into the mid-Cretaceous ocean. Earth Planetary Science Letters, 259, 200–211.
  • 64. Weissert, H. and Lini, A. 1991. Ice age interludes during the time of Cretaceous greenhouse climate. In: D.W. Müller and H.Weissert (Eds), Controversies in modern geology, pp. 173–191. Academic Press; London.
  • 65. Wiedmann, J., Reitner, J., Engeser, T. and Schwentke, W. 1983. Plattentektonik, Fazies- und Subsidenzgeschichte des baskokantabrischen Kontinentalrandes während Kreide und Alt-Tertiär. Zitteliana, 10, 207–244.
  • 66. Wiese, F. 1995. Das mittelturone Romaniceras kallesi-Event im Raum Santander (Nordspanien): Lithologie, Stratigraphie, laterale Veränderung der Ammonitenassoziationen und Paläobiogeographie. Berliner geowissenschaftliche Abhandlungen, E 16, 61–77.
  • 67. Wiese, F. and Wilmsen, M. 1999. Sequence stratigraphy in the Cenomanian to Campanian of the North Cantabrian Basin (Cantabria, N-Spain). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 212, 131–173.
  • 68. Wilmsen, M. 1997. Das Oberalb und Cenoman im Nordkantabrischen Becken (Provinz Kantabrien, Nordspanien): Faziesentwicklung, Bio- und Sequenzstratigraphie. Berliner geowissenschaftliche Abhandlungen , E 23, 1–167.
  • 69. Wilmsen, M. 2005. Stratigraphy and biofacies of the Lower Aptian of the Cuchia (Cantabria, northern Spain). Journal of Iberian Geology, 31, 253–275.
  • 70. Wilpshaar, M. and Leereveld, H. 1994. Palaeoenvironmental change in the Early Cretaceous Vocontian Basin (SE France) reflected by dinoflagellate cysts. Review of Paleobotany and Palynology, 84, 121–128.
  • 71. Zakharov, Y.D., Baraboshkin, E.V., Weissert, H., Mikhailova, I.A., Smyshlyeva, O.P. and Safranov, P.P. 2013. Late Barremian-Early Aptian climate of the northern middle latitudes: stable isotope evidence from bivalve and cephalopod mollusks of the Russian Platform. Cretaceous Research, 44, 183–201.
  • 72. Zorina, S. 2014. Eustatic, tectonic and climatic signatures in the Lower Cretaceous siliciclastic succession on the Eastern Russian Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 412, 91–98.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c6a5ef8-f94a-4904-908e-6e3882860764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.