PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing ultra-fast all-optical full-subtractor using the photonic crystal structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a photonic crystal-based structure for an all-optical full-subtractor has been proposed. The structure includes six nonlinear resonant rings to transmit the incoming optical waves toward the output ports. Using the different radii for nonlinear rods made the possibility of the dropping operation for different amounts of optical intensities. The nonlinear rods are made of a doped-glass with an optical Kerr coefficient of 10–15 m2/W. To calculate the components of the optical waves throughout the structure, the finite-difference time-domain method has been used. The simulation results prove the correct functionality of the proposed structure. Besides, the maximum rise time of the device is equal to 2 ps. The contrast ratio and the area of the structure are around 8.08 dB and 2790 μm2, respectively.
Czasopismo
Rocznik
Strony
99--109
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
  • Department of Electrical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
autor
  • Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
Bibliografia
  • [1] JOHN S., Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987: 2486–2489, DOI: 10.1103/PhysRevLett.58.2486.
  • [2] DAGHOOGHI T., SOROOSH M., ANSARI-ASL K., A low-power all optical decoder based on photonic crystal nonlinear ring resonators, Optik 174, 2018: 400–408, DOI: 10.1016/j.ijleo.2018.08.090.
  • [3] TANABE T., NOTOMI M., MITSUGI S., SHINYA A., KURAMOCHI E., Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip, Optics Letters 30(19), 2005: 2575–2577, DOI: 10.1364/OL.30.002575.
  • [4] MEHDIZADEH F., SOROOSH M., Designing of all optical NOR gate based on photonic crystal, Indian Journal of Pure and Applied Physics 54(1), 2016: 35–39.
  • [5] MIYOSHI Y., IKEDA K., TOBIOKA H., INOUE T., NAMIKI S., KITAYAMA K., Ultra fast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function, Optics Express 16(4), 2008: 2570–2577, DOI: 10.1364/OE.16.002570.
  • [6] MOHEBBI Z., NOZHAT N., EMAMI F., High contrast all-optical logic gates based on 2D nonlinear photonic crystal, Optics Communications 355, 2015: 130–136, DOI: 10.1016/J.OPTCOM.2015.06.023.
  • [7] HASSANGHOLIZADEH-KASHTIBAN M., ALIPOUR-BANAEI H., TAVAKOLI M. B., SABBAGHI-NADOOSHAN R., An ultra fast optical reversible gate based on electromagnetic scattering in nonlinear photonic crystal resonant cavities, Optical Materials 94, 2019: 371–377, DOI: 10.1016/j.optmat.2019.06.014.
  • [8] JIANG Y.-C., LIU S.-B., ZHANG H.-F., KONG X.-K., Reconfigurable design of logic gates based on a two-dimensional photonic crystals waveguide structure, Optics Communications 332, 2014: 359–365, DOI: 10.1016/j.optcom.2014.07.038.
  • [9] MONIEM T.A., All-optical XNOR gate based on 2D photonic-crystal ring resonators, Quantum Electronics 47(2), 2017: 169–172, DOI: 10.1070/QEL16279.
  • [10] DAGHOOGHI T., SOROOSH M., ANSARI-ASL K., Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators, Applied Optics 57(9), 2018: 2250–2257, DOI: 10.1364/AO.57.002250.
  • [11] DAGHOOGHI T., SOROOSH M., ANSARI-ASL K., A novel proposal for all-optical decoder based on photonic crystals, Photonic Network Communications 35, 2018: 335–341, DOI: 10.1007/s11107- 017-0746-4.
  • [12] MEHDIZADEH F., ALIPOUR-BANAEI H., SERAJMOHAMMADI S., Design and simulation of all optical decoder based on nonlinear PhCRRs, Optik 156, 2018: 701–706, DOI: 10.1016/j.ijleo.2017.12.011.
  • [13] KHOSRAVI S., ZAVVARI M., Design and analysis of integrated all-optical 2 × 4 decoder based on 2D photonic crystals, Photonic Network Communications 35, 2018: 122–128, DOI: 10.1007/s11107-017-0724-x.
  • [14] GHOLAMNEJAD S., ZAVVARI M., Design and analysis of all-optical 4--2 binary encoder based on photonic crystal, Optical and Quantum Electronics 49, 2017, 302, DOI: 10.1007/s11082-017-1144-y.
  • [15] MONIEM T.A., All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators, Journal of Modern Optics 63(8), 2016: 735–741, DOI: 10.1080/09500340.2015.1094580.
  • [16] HADDADAN F., SOROOSH M., Low-power all-optical 8-to-3 encoder using photonic crystal-based waveguides, Photonic Network Communications 37, 2019: 83–89, DOI: 10.1007/s11107-018-0795-3.
  • [17] SALIMZADEH A., ALIPOUR-BANAEI H., An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators, Optics Communications 410, 2018: 793–798, DOI: 10.1016/j.optcom.2017.11.036.
  • [18] SERAJMOHAMMADI S., ALIPOUR-BANAEI H., MEHDIZADEH F., Proposal for realizing an all-optical half adder based on photonic crystals, Applied Optics 57(7), 2018: 1617–1621, DOI: 10.1364/AO.57.001617.
  • [19] RAHMANI A., MEHDIZADEH F., Application of nonlinear PhCRRs in realizing all optical half-adder, Optical and Quantum Electronics 50, 2018, 30, DOI: 10.1007/s11082-017-1301-3.
  • [20] CHERAGHI F., SOROOSH M., AKBARIZADEH G., An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities, Superlattices and Microstructures 113, 2018: 359–365, DOI: 10.1016/j.spmi.2017.11.017.
  • [21] NEISY M., SOROOSH M., ANSARI-ASL K., All optical half adder based on photonic crystal resonant cavities, Photonic Network Communications 35, 2018: 245–250, DOI: 10.1007/s11107-017-0736-6.
  • [22] ANDALIB A., A novel proposal for all-optical Galois field adder based on photonic crystals, Photonic Network Communications 35, 2018: 392–396, DOI: 10.1007/s11107-017-0756-2.
  • [23] JALALI P., ANDALIB A., Application of nonlinear PhC-based resonant cavities for realizing all optical Galois Filed adder, Optik 180, 2019: 498–504, DOI: 10.1016/j.ijleo.2018.11.125.
  • [24] JALALI-AZIZPOOR M.R., SOROOSH M., SEIFI-KAVIAN Y., Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder, Photonic Network Communications 36, 2018: 344–349, DOI: 10.1007/s11107-018-0786-4.
  • [25] SERAJMOHAMMADI S., ALIPOUR-BANAEI H., MEHDIZADEH F., A novel proposal for all optical 1-bit comparator using nonlinear PhCRRs, Photonics and Nanostructures - Fundamentals and Applications 34, 2019: 19–23, DOI: 10.1016/j.photonics.2019.01.002.
  • [26] SURENDAR A., ASGHARI M., MEHDIZADEH F., A novel proposal for all-optical 1-bit comparator using nonlinear PhCRRs, Photonic Network Communications 38, 2019: 244–249, DOI: 10.1007/s11107-019-00853-z.
  • [27] ZHU L., MEHDIZADEH F., TALEBZADEH R., Application of photonic-crystal-based nonlinear ring resonators for realizing an all-optical comparator, Applied Optics 58(30), 2019: 8316–8321, DOI: 10.1364/AO.58.008316.
  • [28] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., FARSHIDI E., A novel proposal for all optical analog-to-digital converter based on photonic crystal structures, IEEE Photonics Journal 9(2), 2017: 4700311, DOI: 10.1109/JPHOT.2017.2690362.
  • [29] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., FARSHIDI E., All optical 2-bit analog to digital converter using photonic crystal based cavities, Optical and Quantum Electronics 49, 2017, 38, DOI: 10.1007/s11082-016-0880-8.
  • [30] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., FARSHIDI E., Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure, Applied Optics 56(7), 2017: 1799–1806, DOI: 10.1364/AO.56.001799.
  • [31] TAVOUSI A., MANSOURI-BIRJANDI M.A., SAFFARI M., Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators, Physica E: Low-dimensional Systems and Nanostructures 83, 2016: 101–106, DOI: 10.1016/j.physe.2016.04.007.
  • [32] TAVOUSI A., MANSOURI-BIRJANDI M.A., Optical-analog-to-digital conversion based on successivelike approximations in octagonal-shape photonic crystal ring resonators, Superlattices and Microstructures 114, 2018: 23–31, DOI: 10.1016/j.spmi.2017.11.021.
  • [33] ZAMANIAN-DEHKORDI S.S., SOROOSH M., AKBARIZADEH G., An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures, Optical Review 25, 2018: 523–531, DOI: 10.1007/s10043-018-0443-2.
  • [34] ABBASI A., NOSHAD M., RANJBAR R., KHERADMAND R., Ultra compact and fast All Optical Flip Flop design in photonic crystal platform, Optics Communications 285(24), 2012: 5073–5078, DOI: 10.1016/j.optcom.2012.06.095.
  • [35] ZHAO T., ASGHARI M., MEHDIZADEH F., An all-optical digital 2-to-1 multiplexer using photonic crystal-based nonlinear ring resonators, Journal of Electronic Materials 48, 2019: 2482–2486, DOI: 10.1007/s11664-019-06947-8.
  • [36] PARANDIN F., MALMIR M.R., NASERI M., All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals, Superlattices and Microstructures 109, 2017: 437–441, DOI: 10.1016/j.spmi.2017.05.030.
  • [37] PARANDIN F., KAMARIAN R., JOMOUR M., A novel design of all optical half-subtractor using a square lattice photonic crystals, Optical and Quantum Electronics 53, 2021, 114, DOI: 10.1007/s11082-021-02772-8.
  • [38] MORADI R., All optical half subtractor using photonic crystal based nonlinear ring resonators, Optical and Quantum Electronics 51, 2019, 119, DOI: 10.1007/s11082-019-1831-y.
  • [39] ASKARIAN A., AKBARIZADEH G., FARTASH M., A novel proposal for all optical half-subtractor based on photonic crystals, Optical and Quantum Electronics 51, 2019, 264, DOI: 10.1007/s11082-019-1978-6.
  • [40] ASKARIAN A., AKBARIZADEH G., FARTASH M., All-optical half-subtractor based on photonic crystals, Applied Optics 58(22), 2019: 5931–5935, DOI: 10.1364/AO.58.005931.
  • [41] ASKARIAN A., Design and analysis of all optical half subtractor in 2D photonic crystal platform, Optik 228, 2021, 166126, DOI: 10.1016/j.ijleo.2020.166126.
  • [42] SOROOSH M., MIRALI A., FARSHIDI E., Ultra-fast all-optical half subtractor based on photonic crystal ring resonators, Journal of Optoelectronical Nanostructures 5(1), 2020: 83–100.
  • [43] NAMDARI N., TALEBZADEH R., Simple and compact optical half-subtractor based on photonic crystal resonant cavities in silicon rods, Applied Optics 59(1), 2020: 165–170, DOI: 10.1364/AO.59.000165.
  • [44] FANG Y., TANG X., All optical half-adder/subtractor using photonic-crystal-based nonlinear cavities, Applied Optics 61(9), 2022: 2306–2312, DOI: 10.1364/AO.451212.
  • [45] KHAJEHEIAN N., JAMALI J., FATEHI-DINDARLOU M., TAGHIZADEH M., An all optical full subtractor based on nonlinear photonic crystals, Optik 245, 2021, 167751, DOI: 10.1016/j.ijleo.2021.167751.
  • [46] LOWELL D., HASSAN S., SALE O., ADEWOLE M., HURLEY N., PHILIPOSE U., CHEN B., LIN Y., Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients, Applied Optics 57(22), 2018: 6598–6604, DOI: 10.1364/AO.57.006598.
  • [47] PANG L., NAKAGAWA W., FAINMAN Y., Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write, Applied Optics 42(27), 2003: 5450–5456, DOI: 10.1364/AO.42.005450.
  • [48] CAMPBELL M., SHARP D.N., HARRISON M.T., DENNING R.G., TURBERFIELD A.J., Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 2000: 53–56, DOI: 10.1038/35003523.
  • [49] LOWELL D., HASSAN S., ADEWOLE M., PHILIPOSE U., CHEN B., LIN Y., Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system, Applied Optics 56(36), 2017: 9888–9891, DOI: 10.1364/AO.56.009888.
  • [50] LIU Y., LIU S., ZHANG X., Fabrication of three-dimensional photonic crystals with two-beam holographic lithography, Applied Optics 45(3), 2006: 480–483, DOI: 10.1364/AO.45.000480.
  • [51] KU H.M., HUANG C.Y., CHAO S., Fabrication of three-dimensional autocloned photonic crystal on sapphire substrate, Applied Optics 50(9), 2011: C1-C4, DOI: 10.1364/AO.50.0000C1.
  • [52] SCHUELLER O.J.A., WHITESIDES G.M., ROGERS J.A., MEIER M., DODABALAPUR A., Fabrication of photonic crystal lasers by nanomolding of solgel glasses, Applied Optics 38(27), 1999: 5799–5802, DOI: 10.1364/AO.38.005799.
  • [53] CHEN J.H., HUANG Y.T., YANG Y.L., LU M.F., SHIEH J.M., Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters, Applied Optics 51(24), 2012: 5876–5884, DOI: 10.1364/AO.51.005876.
  • [54] CUI L., ZHANG Y., WANG J., REN Y., SONG Y., JIANG L., Ultra-fast fabrication of colloidal photonic crystals by spray coating, Macromolecular Rapid Communications 30(8), 2009: 598–603, DOI: 10.1002/marc.200800694.
  • [55] VON FREYMANN G., KITAEV V., LOTSCH B.V., OZIN G.A., Bottom-up assembly of photonic crystals, Chemical Society Reviews 42(7), 2013: 2528–2554, DOI: 10.1039/c2cs35309a.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c5d8263-ea8a-4c6b-8f7b-b59ad3921a8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.