Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The development of renewable energy is related to the growing share of wind energy in the worldwide balance. Assuming the average lifetime of wind turbines is about 20 years, an avalanche-growing amount of waste in the form of used wind turbine components should be expected. Their disposal will become a challenge. The aim of this study is to indicate the energy potential of the utilization of wind turbine blades by pyrolysis method with the simultaneous production of gaseous and liquid fuels and the possibility of recovering raw materials in the form of carbon and glass fibers. The results show that over 50% of the initial mass of the pyrolyzed waste wind turbine blades can be turned into gaseous and liquid products. These products have a high calorific value (ca. 30 MJ/kg) which is more than sufficient to sustain the pyrolysis process. Additionally, the product stream contains high concentrations of ethylene, propylene, and phenol, which could be valuable products once separated. The recovered fibers are covered with carbonaceous material, which necessitates a post-oxidation process for their effective utilization. Furthermore, the high temperature of the pyrolysis process (600 °C) likely causes degradation of the mechanical properties of the glass fibers. These challenges highlight the necessity of addressing the limitations associated with fiber recovery, including the removal of carbonaceous residues and the preservation of fiber quality. By discussing these constraints, the study provides a more comprehensive overview of the findings, offering insights into both the potential and the challenges of using the pyrolysis method for the disposal and recycling of wind turbine blades.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
15--27
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, Wroclaw 50-370, Poland
autor
- Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, Wroclaw 50-370, Poland
autor
- Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, Wroclaw 50-370, Poland
autor
- Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, Wroclaw 50-370, Poland
autor
- QualiTech Polska, Obornicka 330, 60-995 Poznań, Poland
Bibliografia
- 1. Akesson, D., Foltynowicz, Z., Christéen, J., & Skrifvars, M. (2013). Products obtained from decomposition of glass fiber-reinforced composites using microwave pyrolysis. Polimery/Polymers, 58(7–8), 582–586. https://doi.org/10.14314/polimery.2013.582
- 2. Åkesson, D., Foltynowicz, Z., Christéen, J., & Skrifvars, M. (2012). Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines. Journal of Reinforced Plastics and Composites, 31(17), 1136–1142. https://doi.org/10.1177/0731684412453512
- 3. Beauson, J., Laurent, A., Rudolph, D. P., & Pagh Jensen, J. (2022). The complex end-of-life of wind turbine blades: A review of the European context. Renewable and Sustainable Energy Reviews, 155, 111847. https://doi.org/10.1016/j.rser.2021.111847
- 4. Beauson, Justine, & Brøndsted, P. (2016). Wind Turbine Blades: An End of Life Perspective. In W. Ostachowicz, M. McGugan, J.-U. Schröder-Hinrichs, & M. Luczak (Eds.), MARE-WINT: New Materials and Reliability in Offshore Wind Turbine Technology (pp. 421–432). Springer International Publishing. https://doi.org/10.1007/978-3-319-39095-6_23
- 5. Błędzki, A. K., Gorący, K., Urbaniak, M., & Scheibe, M. (2021). Problems connected with utilization of polymer composite products and waste materials Part I. Production volume, utilization of composites with carbon fibres, legislative aspects, industrial recycling. Polimery, 64(11–12), 777–787. https://doi.org/10.14314/polimery.2019.11.6
- 6. Bu, Q., Cao, M., Wang, M., Vasudevan, S. V., & Mao, H. (2022). Enhancement of bio-oil quality over self-derived bio-char catalyst via microwave catalytic pyrolysis of peanut shell. Journal of Analytical and Applied Pyrolysis, 164, 105534. https://doi.org/10.1016/j.jaap.2022.105534
- 7. Chen, W., Ye, M., Li, M., Xi, B., Hou, J., Qi, X., Zhang, J., Wei, Y., & Meng, F. (2023). Characteristics, kinetics and product distribution on pyrolysis process for waste wind turbine blades. Journal of Analytical and Applied Pyrolysis, 169, 105859. https://doi.org/10.1016/j.jaap.2023.105859
- 8. Cooperman, A., Eberle, A., & Lantz, E. (2021). Wind turbine blade material in the United States: Quantities, costs, and end-of-life options. Resources, Conservation and Recycling, 168, 105439. https://doi.org/10.1016/j.resconrec.2021.105439
- 9. Cunliffe, A. M., Jones, N., & Williams, P. T. (2003). Recycling of fibre-reinforced polymeric waste by pyrolysis: Thermo-gravimetric and bench-scale investigations. Journal of Analytical and Applied Pyrolysis, 70(2), 315–338. https://doi.org/10.1016/S0165-2370(02)00161-4
- 10. Czajczyńska, D., Krzyżyńska, R., & Jouhara, H. (2022). Hydrogen sulfide removal from waste tyre pyrolysis gas by inorganics. International Journal of Hydrogen Energy, 52, 785–799 https://doi.org/10.1016/j.ijhydene.2022.03.082
- 11. Daugaard, D. E., & Brown, R. C. (2003). Enthalpy for pyrolysis for several types of biomass. Energy and Fuels, 17(4), 934–939. https://doi.org/10.1021/ef020260x
- 12. Feih, S., Boiocchi, E., Mathys, G., Mathys, Z., Gibson, A. G., & Mouritz, A. P. (2011). Mechanical properties of thermally-treated and recycled glass fibres. Composites Part B: Engineering, 42(3), 350–358. https://doi.org/10.1016/j.compositesb.2010.12.020
- 13. Fonte, R., & Xydis, G. (2021). Wind turbine blade recycling: An evaluation of the European market potential for recycled composite materials. Journal of Environmental Management, 287, 112269. https://doi.org/10.1016/j.jenvman.2021.112269
- 14. Ge, L., Li, X., Feng, H., Xu, C., Lu, Y., Chen, B., Li, D., & Xu, C. (2023). Analysis of the pyrolysis process, kinetics and products of the base components of waste wind turbine blades (epoxy resin and carbon fiber). Journal of Analytical and Applied Pyrolysis, 170. https://doi.org/10.1016/j.jaap.2023.105919
- 15. Ge, L., Xu, C., Feng, H., Jiang, H., Li, X., Lu, Y., Sun, Z., Wang, Y., & Xu, C. (2023). Study on isothermal pyrolysis and product characteristics of basic components of waste wind turbine blades. Journal of Analytical and Applied Pyrolysis, 171. https://doi.org/10.1016/j.jaap.2023.105964
- 16. Giorgini, L., Leonardi, C., Mazzocchetti, L., Zattini, G., Cavazzoni, M., Montanari, I., Tosi, C., & Benelli, T. (2016). Pyrolysis of fiberglass/polyester composites: Recovery and characterization of obtained products. FME Transactions, 44(4), 405–414. https://doi.org/10.5937/fmet1604405G
- 17. Glushkov, D., Nyashina, G., Shvets, A., Pereira, A., & Ramanathan, A. (2021). Current status of the pyrolysis and gasification mechanism of biomass. Energies, 14(22). https://doi.org/10.3390/en14227541
- 18. Griessacher, T., Antrekowitsch, J., & Steinlechner, S. (2012). Charcoal from agricultural residues as alternative reducing agent in metal recycling. Biomass and Bioenergy, 39, 139–146. https://doi.org/10.1016/j.biombioe.2011.12.043
- 19. GWEC. (2017). Global wind report 2019. Brussels: GWEC, 637.
- 20. Irena, I. (2019). Future of wind: Deployment, investment, technology, grid integration and socioeconomic aspects. Abu Dhabii.
- 21. Jenkins, P. G., Yang, L., Liggat, J. J., & Thomason, J. L. (2015). Investigation of the strength loss of glass fibre after thermal conditioning. Journal of Materials Science, 50(3), 1050–1057. https://doi.org/10.1007/s10853-014-8661-x
- 22. Jensen, J. P., & Skelton, K. (2018). Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renewable and Sustainable Energy Reviews, 97(July), 165–176. https://doi.org/10.1016/j.rser.2018.08.041
- 23. Karuppannan Gopalraj, S., & Kärki, T. (2020). A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis. SN Applied Sciences, 2(3), 1–21. https://doi.org/10.1007/s42452-020-2195-4
- 24. Krauklis, A. E., Karl, C. W., Gagani, A. I., & Jørgensen, J. K. (2021). Composite material recycling technology—state-of-the-art and sustainable development for the 2020s. Journal of Composites Science, 5(1). https://doi.org/10.3390/jcs5010028
- 25. Liu, P., & Barlow, C. Y. (2017). Wind turbine blade waste in 2050. Waste Management, 62, 229–240. https://doi.org/10.1016/j.wasman.2017.02.007
- 26. Mattsson, C., André, A., Juntikka, M., Tr nkle, T., & Sott, R. (2020). Chemical recycling of End-of-Life wind turbine blades by solvolysis/HTL. IOP Conference Series: Materials Science and Engineering, 942(1). https://doi.org/10.1088/1757-899X/942/1/012013
- 27. Naqvi, S. R., Prabhakara, H. M., Bramer, E. A., Dierkes, W., Akkerman, R., & Brem, G. (2018). A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resources, Conservation and Recycling, 136(April), 118–129. https://doi.org/10.1016/j.resconrec.2018.04.013
- 28. Oliveux, G., Dandy, L. O., & Leeke, G. A. (2015). Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science, 72, 61–99. https://doi.org/10.1016/j.pmatsci.2015.01.004
- 29. Paulsen, E. B., & Enevoldsen, P. (2021). A multidisciplinary review of recycling methods for end-of-life wind turbine blades. Energies, 14(14), 1–13. https://doi.org/10.3390/en14144247
- 30. Ramirez-Tejeda, K., Turcotte, D. A., & Pike, S. (2017). Unsustainable wind turbine blade disposal practices in the united states: A case for policy intervention and technological innovation. New Solutions, 26(4), 581–598. https://doi.org/10.1177/1048291116676098
- 31. Xu, M. xin, Ji, H. wen, Wu, Y. chang, Di, J. yi, Meng, X. xi, Jiang, H., & Lu, Q. (2023). The pyrolysis of end-of-life wind turbine blades under different atmospheres and their effects on the recovered glass fibers. Composites Part B: Engineering, 251, 110493. https://doi.org/10.1016/j.compositesb.2022.110493
- 32. Yang, W., Kim, K. H., & Lee, J. (2022). Upcycling of decommissioned wind turbine blades through pyrolysis. Journal of Cleaner Production, 376(June), 134292. https://doi.org/10.1016/j.jclepro.2022.134292
- 33. Yang, Y., Boom, R., Irion, B., van Heerden, D. J., Kuiper, P., & de Wit, H. (2012). Recycling of composite materials. Chemical Engineering and Processing: Process Intensification, 51, 53–68. https://doi.org/10.1016/j.cep.2011.09.007
- 34. Zhang, M., Fan, G., Liu, N., Yang, M., Li, X., & Wu, Y. (2023). Tar removal in pine pyrolysis catalyzed by bio-char supported nickel catalyst. Journal of Analytical and Applied Pyrolysis, 169, 105843. https://doi.org/10.1016/j.jaap.2022.105843
- 35. Zhang, X,. Li, L., Wang, J-X., Wen, H-M., Krishna, R., Wu, H., Zhou, W., Chen, Z-N., Li, B., Qian, G., Chen, B., (2020) Selective ethane/ethylene separation in a robust microporous hydrogen-bonded organic framework. Journal of the American Chemical Society, 142, 633–640, doi:10.1021/jacs.9b12428
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c54e7ef-f178-4bc8-b24a-0f367b50a2ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.