PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical investigation of vanadium oxide film with surface microstructure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a method to design a surface microstructure of vanadium oxide to enhance optical absorption. This method, using a density of eigenfrequency, can be calculated by a planar wave expand method, to indicate the absorption efficiency of a dispersion material, which can be used as an approach method for further design. Based on this, a nanostructure-based vanadium oxide film is designed and simulated to validate this method. The simulation results show that the tendency of density of eigenfrequency is corresponding to the tendency of optical absorption enhancement. Moreover, this structure can achieve high optical broadband absorption when the material dispersion is considered. High optical absorption enhancement can be achieved by adjusting the geometrical parameters; our maximum overall enhancement absorption ratio was 31.84% at the metal phase, which can be attributed to the enhancement effect of a photonic band edge.
Czasopismo
Rocznik
Strony
601--609
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China, 210094
autor
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China, 210094
autor
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China, 210094
autor
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China, 210094
autor
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China, 210094
autor
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China, 210094
autor
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China, 210094
Bibliografia
  • [1] MORIN F.J., Oxides which show a metal-to-insulator transition at the Neel temperature, Physical Review Letters 3(1), 1959, pp. 34–36.
  • [2] CAVALLERI A., TÓTH CS., SIDERS C.W., SQUIER J.A., RÁKSI F., FORGET P., KIEFFER J.C., Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition, Physical Review Letters 87(23), 2001, article ID 237401.
  • [3] LYSENKO S., RÚA A., VIKHNIN V., FERNÁNDEZ F., LIU H., Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation, Physical Review B 76(3), 2007, article ID 035104.
  • [4] MANNING T.D., PARKIN I.P., CLARK R.J.H., SHEEL D., PEMBLE M.E., VERNADOU D., Intelligent window coatings: atmospheric pressure chemical vapour deposition of vanadium oxides, Journal of Materials Chemistry 12(10), 2002, pp. 2936–2939.
  • [5] YANFENG GAO, HONGJIE LUO, ZONGTAO ZHANG, LITAO KANG, ZHANG CHEN, JING DU, MINORU KANEHIRA, CHUANXIANG CAO, Nanoceramic VO2 thermochromic smart glass: a review on progress in solution processing, Nano Energy 1(2), 2012, pp. 221–246.
  • [6] BONORA S., BORTOLOZZO U., RESIDORI S., BALU R., ASHRIT P.V., Mid-IR to near-IR image conversion by thermally induced optical switching in vanadium dioxide, Optics Letters 35(2), 2010, pp. 103–105.
  • [7] SAJEEV JOHN, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987, p. 2486.
  • [8] YABLONOVITCH E., Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58(20), 1987, p. 2059.
  • [9] IMADA M., NODA S., CHUTINAN A., TOKUDA T., MURATA M., SASAKI G., Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, Applied Physics Letters 75(3), 1999, pp. 316–318.
  • [10] TAESUNG KIM, LEISHER P.O., DANNER A.J., WIRTH R., STREUBEL K., CHOQUETTE K.D., Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED, IEEE Photonics Technology Letters 18(17), 2006, pp. 1876–1878.
  • [11] KOCER H., BUTUN S., BANAR B., WANG K., TONGAY S., JUNQIAO WU, AYDIN K., Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures, Applied Physics Letters 106(16), 2015, article ID 161104.
  • [12] SUH J.Y., DONEV E.U., LOPEZ R., FELDMAN L.C., HAGLUND R.F. JR., Modulated optical transmission of subwavelength hole arrays in metal-VO2 films, Applied Physics Letters 88(13), 2006, article ID 133115.
  • [13] DUCHÉ D., ESCOUBAS L., SIMON J.-J., TORCHIO P., VERVISCH W., FLORY F., Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells, Applied Physics Letters 92(19), 2008, article ID 193310.
  • [14] YUNLU XU, TAO GONG, MUNDAY J.N., The generalized Shockley–Queisser limit for nanostructured solar cells, Scientific Reports 5, 2015, article ID 13536.
  • [15] ZHE WANG, WEI HONG, QIAN CHEN, GUOHUA GU, JUN LU, Enhanced optical absorption in VO2 film using photonic crystal, 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), August 24–28, 2015, Busan, South Korea, article ID 27P_15.
  • [16] NODA S., YOKOYAMA M., IMADA M., CHUTINAN A., MOCHIZUKI M., Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design, Science 293(5532), 2001, pp. 1123–1125.
  • [17] RUFANGURA P., SABAH C., Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications, Journal of Alloys and Compounds 671, 2016, pp. 43–50.
  • [18] RUFANGURA P., SABAH C., Dual-band perfect metamaterial absorber for solar cell applications, Vacuum 120, 2015, pp. 68–74.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c535ca2-0140-4ac6-becc-4ba4e2fcc462
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.