Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Modern devices for dynamic calibration of pressure sensors (shock tubes, power simulators of pressure impulse, etc.) have a number of drawbacks stemming from the principles of creating a test impact. Besides, the problem of rational choice of the method of calibrating pressure sensors depending on the dynamic parameters of the sensor and the required test accuracy has not been solved for modern test systems. The paper presents a solution to the problem of correlation between the test parameters, dynamic parameters of the pressure sensor and test accuracy. The obtained analytical dependencies of such a relationship make it possible to reasonably select or develop a method for studying the dynamic characteristics of sensors. Based on theoretical studies, the principle of creating a test impact has been proposed, and a method and device for implementing dynamic calibration of pressure sensors have been devised. The developed device allows the transient response of the sensor to be obtained, as well as setting the decay time of its natural vibration. Based on the transient response, other dynamic characteristics of the sensor, namely the impulse transient and frequency response, can be calculated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
657--671
Opis fizyczny
Bibliogr. 22 poz., fot., rys., wykr., wzory
Twórcy
autor
- Lviv Polytechnic National University, Institute of Computer Technologies, Automation and Metrology, Department of Intelligent Mechatronics and Robotics, Kniazia Romana Str.,19, Lviv, 79013, Ukraine
autor
- Lviv Polytechnic National University, Institute of Computer Technologies, Automation and Metrology, Department of Intelligent Mechatronics and Robotics, Kniazia Romana Str.,19, Lviv, 79013, Ukraine
autor
- Lviv Polytechnic National University, Institute of Computer Technologies, Automation and Metrology, Department of Intelligent Mechatronics and Robotics, Kniazia Romana Str.,19, Lviv, 79013, Ukraine
autor
- Lviv Polytechnic National University, Institute of Computer Technologies, Automation and Metrology, Department of Intelligent Mechatronics and Robotics, Kniazia Romana Str.,19, Lviv, 79013, Ukraine
Bibliografia
- [1] Javed, Y., Mansoor, M., & Shah, I. A. (2019). A review of principles of MEMS pressure sensing with its aerospace applications. Sensor Review, 39(4), 652-664. https://doi.org/10.1108/sr-06-2018-0135
- [2] Custom Pressure Sensors for the Aerospace Industry. Merit Sensor. https://meritsensor.com
- [3] Sensors for Aerospace & Defense. PCB Piezotronics. https://www.pcb.com/aerospace.
- [4] Tykhan, M., Repetylo, T., Kliuchkovskyi, S., & Markina, O. (2019). Construction and investigation of a method for measuring the non-stationary pressure using a wavelet transform. Eastern-European Journal of Enterprise Technologies, 1(4), 97, 28-34. https://doi.org/10.15587/1729-4061.2019.156959
- [5] Tykhan, M., Ivakhiv, O., & Teslyuk, V. (2017). New type of Piezoresistive Pressure Sensors for Environments with Rapidly Changing Temperature. Metrology and Measurement Systems, 24(1), 185-192. https://doi.org/10.1515/mms-2017-0010
- [6] Durgut, Y., & Akşahin, E. (2022). Design and Manufacturing of a Dynamic Pressure Standard Based on Dropping Mass Principle. European Journal of Science and Technology, 34, 259-266 https://doi.org/10.31590/ejosat.1081174
- [7] Knott, A. J., & Robinson, I. A. (2018). Dynamic characterisation of pressure transducers using shock tube methods. Journal of Physics: Conference Series, 1065, 162002. https://doi.org/10.1088/1742-6596/1065/16/162002
- [8] Svete, A., Amer, E., Jönsson, G., Kutin, J., & Arrhén, F. (2023). A method for correcting the high-frequency mechanical vibration effects in the dynamic calibration of pressure measurement systems using a shock tube. Mechanical Systems and Signal Processing, 193, 110246. https://doi.org/10.1016/j.ymssp.2023.110246
- [9] Downes, S., Knott, A., & Robinson, I. (2014). Towards a shock tube method for the dynamic calibration of pressure sensors. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2023), 20130299. https://doi.org/10.1098/rsta.2013.0299
- [10] Theodoro, F. R. F., Reis, M. L. C. C., & d’Souto, C. (2018). An overview of the dynamic calibration of piezoelectric pressure transducers. Journal of Physics: Conference Series, 975, 012002. https://doi.org/10.1088/1742-6596/975/1/012002
- [11] Gelany, S. A., Osman, T. A., Abouel-Fotouh, A. M., Eltawil, A. A., & Hussein, B. A. (2018). New design for dynamic pressure calibration system. ARPN Journal of Engineering and Applied Sciences, 13(24), 9637-9641. https://www.researchgate.net/publication/330205552
- [12] Yilmaz, R., Durgut, Y., Hamarat, A. (2020). Calibration of Digital Dynamic Pressure Sensors. SMSI 2020 Conference - Sensor and Measurement Science International, 376-377. https://doi.org/10.5162/SMSI2020/E3.4
- [13] Liang, W., Chen, R., & Zhang, Y. (2020). A dynamic calibration method of free-field pressure sensor based on Hopkinson bar. AIP Advances, 10(6). https://doi.org/10.1063/5.0008383
- [14] Bilgiç, E., & Durgut, Y. (2015). Effects of Waveform Model on Sensitivity Values of Transducers Used in Mechanical Dynamic Measurements. Acta Physica Polonica A, 128(2B), B-267-B-271. https://doi.org/10.12693/aphyspola.128.b-267
- [15] Pereira, J. D. (2024). Pressure Sensors: Working Principles of Static and Dynamic Calibration. Sensors, 24(1), 629. https://doi.org/10.3390/s24020629
- [16] Wang, J., Yu, Y., Zhou, L., & Ye, R. (2018). Numerical simulation and optimized design of cased telescoped ammunition interior ballistic. Defence Technology, 14(1), 119-125. https://doi.org/10.1016/j.dt.2017.11.006
- [17] Lu, X., Zhou, Y., & Yu, Y. (2010). Experimental Study and Numerical Simulation of Propellant Ignition and Combustion for Cased Telescoped Ammunition in Chamber. Journal of Applied Mechanics, 77(4). https://doi.org/10.1115/1.4001560
- [18] Li, X., Liang, L., & Mei, S. (2023). Numerical simulation of the extruded process of Cased Telescoped Ammunition. Journal of Physics: Conference Series, 2528(1), 012041. https://doi.org/10.1088/1742-6596/2528/1/012041
- [19] Kagankiewicz, F., & Magier, M. (2023). Experimental verification of the internal ballistics numerical simulations of classical weapons in Lagrangian coordinates. Continuum Mechanics and Thermodynamics. https://doi.org/10.1007/s00161-023-01263-3
- [20] Otón-Martínez, R. A., Velasco, F. J. S., Nicolás-Pérez, F., García-Cascales, J. R., & Mur-Sanz de Galdeano, R. (2021). Three-Dimensional Numerical Modeling of Internal Ballistics for Solid Propellant Combinations. Mathematics, 9(21), 2714. https://doi.org/10.3390/math9212714
- [21] Bakalov, V., Kuzmenko, V., Yarish, I., Zroichykov., D. (2023). Computer study of the mathematical model of the artillery shot process. Scientific Works of State Scientific Research Institute of Armament and Military Equipment Testing and Certification. 15(1). https://doi.org/10.37701/dndivsovt.15.2023.02
- [22] Zeldovych, Y. B., Barenblatt, G. I., Librovich, V. B., Makhviladze, H. M. (1980). Mathematical theory of combustion and explosion. Nauka.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c4e3108-07ab-415d-af59-7ee828304456
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.