PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of UV radiation on TiO2 nanoparticles antibacterial behaviour

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The influence of UV radiation on the antibacterial properties of titanium oxide nanoparticles was examined using yeast Saccharomyces cerevisiae strain for this purpose. Design/methodology/approach: Nanopowders were made with sol-gel method. Surface morphology studies of the obtained materials were made using Zeiss's Supra 35 scanning electron microscope. In order to confirm the chemical composition of observed nanopowders, qualitative tests were performed by means of spectroscopy of scattered X-ray energy using the Energy Dispersive Spectrometer (EDS). The DLS (Dynamic Light Scattering) method was used to analyse the particle size distribution using the AntonPaar Litesizer 500 nanoparticle size analyser. Changes in particle size distribution at elevated temperatures were also observed. The antibacterial properties of titanium oxide nanoparticles were examined by subjecting the yeast sample to irradiation with an UV lamp. Findings: Samples containing yeast Saccharomyces cerevisiae were irradiated with and without the addition of TiO2 nanoparticles. A faster decrease in the colony count was observed compared to irradiated exposures without the addition of a suspension. Practical implications: Presented materials can be used in the production of antibacterial coatings for surfaces occurring in public spaces such as schools, hospitals, public toilets for the simple and effective elimination of bacteria and fungi as a result of exposures. Originality/value: The antibacterial properties of titanium oxide nanoparticles under UV radiation were confirmed.
Rocznik
Strony
25--31
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Student in the Faulty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] K. Szmajnta, M. Szindler, Synthesis and properties of TiO2, NiO and ZnO nanoparticles and their possible biomedical application, Archives of Materials Science and Engineering 98/2 (2019) 81-84, DOI: https://doi.org/10.5604/01.3001.0013.4612
  • [2] L.A. Dobrzański, The significance of the nano- structural components on the properties of the nano- engineering materials, Journal of Achievements in Materials and Manufacturing Engineering 88/2 (2018) 55-85, DOI: https://doi.org/10.5604/01.3001.0012.6150
  • [3] J. Palan, L. Malecek, J. Hodek, M. Zemko, J. Dzugan, Possibilities of biocompatible material production using conform SPD technology, Archives of Materials Science and Engineering 88/1 (2017) 5-11, DOI: https://doi.org/10.5604/01.3001.0010.7746
  • [4] R. Mittler, ROS Are Good, Trends in Plant Science 22/1 (2017) 11-19, DOI: https://doi.org/10.1016/j.tplants.2016.08.002
  • [5] J.N. Moloney, T.C. Cotter, ROS signalling in the biology of cancer, Seminars in Cell & Developmental Biology 80 (2018) 50-64, DOI: https://doi.org/10.1016/tsemcdb.2017.05.023
  • [6] S.I. Zandalinas, R. Mittler, ROS- induced ROS release in plant and animal cells, Free Radical Biology and Medicine 122 (2018) 21-27, DOI: https://doi.org/10.1016/tfreeradbiomed.2017.11.028
  • [7] H. Ma, L. Zhao, L. Guo, F. Chen, W. You, Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV, Journal of Hazardous Materials 369 (2019) 719-726, DOI: https://doi.org/10.1016/tjhazmat.2019.02.080
  • [8] A. Moriyama, J. Takahashi, I. Yamada, H. Iwahashi, Oxidative stress caused by TiO2 nanoparticles under UV irradiation is due to UV irradiation not through nanoparticles, Chemico-Biological Interactions 294 (2018) 144-150, DOI: https://doi.org/10.1016/tcbi.2018.08.017
  • [9] S. Mahshid, M. Askari, M. Sasani Ghamsari, Synthesis of TiO2 Nanoparticles by hydrolysis and peptization of titanium isopropoxide solution, Journal of Materials Processing Technology 189/1-3 (2007) 296-300, DOI: https://doi.org/10.1016/tjmatprotec.2007.01.040
  • [10] L. Fu, M. Hamzeh, S. Dodard, Y.H. Zhao, G.I. Sunahara, Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation, Environmental Toxicology and Pharmacology 39/3 (2015) 1074-1080, DOI: https://doi.org/10.1016/j.etap.2015.03.015
  • [11] J. Wang, Y. Guo, B. Liu, X. Jin, L. Liu, R. Xu, Y. Kong, B. Wang, Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sono- catalytic degradation of organic dyes, Ultrasonic Sono- chemistry 18/1 (2011) 177-183, DOI: https://doi.org/10.1016/j.ultsonch.2010.05.002
  • [12] A.M. Świdwińska-Gajewska, S. Czerczak, Titanium dioxide nanoparticles - biological effects, Medycyna Pracy 65/5 (2014) 651-663, DOI: https://doi.org/10.13075/mp.5893.00096 (in Polish).
  • [13] X. Chu, L. Mao, O. Johnson, K. Li, J. Phan, Q. Yin, L. Lin, J. Zhang, W. Chen, Y. Zhang, Exploration of TiO2 nanoparticle mediated microdynamic therapy on cancer treatment, Nanomedicine: Nanotechnology, Biology and Medicine 18 (2019) 272-281, DOI: https://doi.org/10.1016/j.nano.2019.02.016
  • [14] A.J. Haider, R.H. Al-Anbari, G.R. Kadhim, C.T. Salame, Exploring potential environmental applications of TiO2 nanoparticles, Energy Procedia 119 (2017) 332-345, DOI: https://doi.org/10.1016/j.egypro.2017.07.117
  • [15] K. Kosmala, R. Szymańska, Titanium (IV) oxide nanoparticles. Preparation, properties and application, Kosmos: Problemy Nauk Biologicznych 65/2 (2016) 235-245 (in Polish).
  • [16] P. Rokicka-Koniczna, A. Wanag, A. Sienkiewicz, E. Kusiak-Nejman, A. W. Morawski, Antibacterial effect of TiO2 nanoparticles modified with APTES, Catalysis Communications 134 (2020) 105862, DOI: https://doi.org/10.1016/j.catcom.2019.105862
  • [17] S.H. Hosseinali, Z.P. Boushehri, B. Rasti, M. Mirpour, K. Shahpasand, M. Falahati, Biophysical, molecular dynamics and cellular studies on the interaction of nickel oxide nanoparticles with tau proteins and neuron-like cells, International Journal of Biological Macromolecules 125 (2019) 778-784, DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.062
  • [18] T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light, Materials Chemistry and Physic 212 (2018) 325-335, DOI: https://doi.org/10.1016/j.matchemphys.2018.03.052
  • [19] N. Nithya, G. Bhoopathi, G. Magesh, C.D. Nesa Kumar, Neodymium doped TiO2 nanoparticles by sol- gel method for antibacterial and photocatalytic activity, Materials Science in Semiconductor Processing 83 (2018) 70-82, DOI: https://doi.org/10.1016/j.mssp.2018.04.011
  • [20] G. Machalska, M. Noworolnik, M. Szindler, W. Sitek, R. Babilas, Titanium dioxide nanoparticles and thin films deposited by an atomization method, Archives of Materials Science and Engineering 100/1-2 (2019) 34-41, DOI: https://doi.org/10.5604/01.3001.0013.6000
  • [21] M. Pawlyta, B. Sobel, B. Liszka, Estimation of the chemical specific surface area of catalytic nanoparticles by TEM images analysis, Journal of Achievements in Materials and Manufacturing Engineering 87/1 (2018) 5-12, DOI: https://doi.org/10.5604/01.3001.0012.0733
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c4bfce7-3746-4bb4-a58b-66835ab9d5f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.