Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mineral carbonation process was proposed for effective CO2 capture and utilization from flue gas streams, such as those emitted by coal-fired power plants. In the present work, an alternative technology using sodium hydroxide (NaOH) solution as an absorbent for capturing CO2 and converting it into value-added materials while mitigating emissions was provided. This research examined the use of a packed bed reactor and a bubble column reactor for CO2 absorption and carbonation of NaOH solution to produce sodium bicarbonate (NaHCO3), offering a more environmentally friendly production process compared to traditional methods. The influence of significant operating parameters, namely pH value, gas flow rate, and absorbent flow rate, on CO2 capture in a bubble column reactor was experimentally explored using NaOH solution. The formation of sodium bicarbonate during the carbonation experiment was confirmed by X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The experimental results show a CO2 removal efficiency exceeding 95% and a NaHCO3 purity above 94% when utilizing a bubble column reactor.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
30--45
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Chemical Engineer Division, National Atomic Nuclear Research Institute, No. 1000, Wenhua Rd., Longtan Dist., Taoyuan City 325207, Taiwan (R.O.C.)
autor
- Chemical Engineer Division, National Atomic Nuclear Research Institute, No. 1000, Wenhua Rd., Longtan Dist., Taoyuan City 325207, Taiwan (R.O.C.)
autor
- Chemical Engineer Division, National Atomic Nuclear Research Institute, No. 1000, Wenhua Rd., Longtan Dist., Taoyuan City 325207, Taiwan (R.O.C.)
autor
- Chemical Engineer Division, National Atomic Nuclear Research Institute, No. 1000, Wenhua Rd., Longtan Dist., Taoyuan City 325207, Taiwan (R.O.C.)
autor
- Chemical Engineer Division, National Atomic Nuclear Research Institute, No. 1000, Wenhua Rd., Longtan Dist., Taoyuan City 325207, Taiwan (R.O.C.)
Bibliografia
- 1. Intergovernmental Panel on Climate Change (IPCC). AR5 Synthesis Report: Climate Change (2014), Geneva, Switzerland, AR5 Synthesis Report: Climate Change 2014 — IPCC.
- 2. Olajire A.A. (2010). CO2 capture and separation technologies for end-of-pipe applications - A review. Energy, 35, 2610–2628. https://doi.org/10.1016/j. energy.2010.02.030
- 3. Lee J.H., Kwak N.S., Lee I.Y. (2015). Performance and economic analysis of commercial-scale coal-fired power plant with post-combustion CO2 capture. Korean J. Chem. Eng. 32, 800–807. https://doi.org/10.1007/s11814-014-0267-0
- 4. Wang M., Lawal A., Stephenson P., Sidders J. Ramshaw C. (2011). Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89, 1609–1624. https://doi.org/10.1016/j.cherd.2010.11.005
- 5. Markewitz P., Kuckshinrichs W., Leitner W., Linssen J., Zapp P., Bongartz R., Schreiber A., Müller T. E. (2012). Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci. 5(6), 7281–7305. https://doi.org/10.1039/C2EE03403D
- 6. Shim J.G., Lee D.W., Lee J.H., Kwak N.S. (2016). Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide. Environ. Eng. Res. 21, 297–303. https://doi.org/10.4491/eer.2016.042
- 7. M. Yoo, S.J. Han, J.H. (2013). Wee, Carbon dioxide capture capacity of sodium hydroxide aqueous solution. J. of Environ. Management. 114, 512–519. https://doi.org/10.1016/j.jenvman.2012.10.061
- 8. Guo Y., Niu Z., Lin W. (2011). Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column. Energy Procedia 4, 512–518. https://doi.org/10.1016/j.egypro.2011.01.082
- 9. Kordylewski W., Sawicka D., Falkowski T. (2013). Laboratory tests on the efficiency of carbon dioxide capture from gases in NaOH solutions. J. of Ecol. Eng. 14, 54–62. https://doi.org/10.5604/2081139X.1043185
- 10. Joe J., Clive B., Mark C., Al Y., David L. (2010). SkyMine Carbon, Mineralization Pilot Project. United States.
- 11. Han S.J., Yoo M., Kim D.W., Wee J.H. (2011). Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent. Energy Fuels 25, 3825–3834. https://doi.org/10.1021/ef200415p
- 12. Mahmoudkhani M., Keith D.W. (2009). Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air thermodynamic analysis. Int. J. Greenh. Gas Con. 3, 376–384. https://doi.org/10.1016/j.ijggc.2009.02.003
- 13. Cousins A., Wardhaugh L.T., Feron P.H.M. (2011). A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption. Int. J. Greenh. Gas Con. 5, 605– 619. https://doi.org/10.1016/j.ijggc.2011.01.002
- 14. Pozzo A.D., Moricone R., Tugnoli A., Cozzani V. (2019). Experimental investigation of the reactivity of sodium bicarbonate toward hydrogen chloride and sulfur dioxide at low temperatures Ind. Eng. Chem. Res. 58, 6316–6324. https://doi.org/10.1021/acs.iecr.9b00610
- 15. Chen X.K., Lu K.L., Xiao Y., Su B., Wang Y.Y., Zhao T.L. (2022). Investigation on the inhibition of aluminum dust explosion by sodium bicarbonate and its solid product sodium carbonate. ACS Omega, 7(1), 617–628. https://doi.org/10.1021/acsomega.1c05224
- 16. Keener T.C., Frazier G.C., Davis W.T. (1985). Thermal decomposition of sodium bicarbonate. Chem. Eng. Commun. 33, 93–105. https://doi.org/10.1080/00986448508911162
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c4b7ca1-04e6-4204-a1c0-69dd19253303
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.