PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Epoxy-Based Composites Reinforced with MMT and TiO2 Nanoparticles and Supported with the Honeycomb Aramid Core: A Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kompozyty na bazie epoksydów wzmocnione nanocząsteczkami MMT i TiO2 oraz wzmocnione rdzeniem aramidowym o strukturze plastra miodu: studium przypadku
Języki publikacji
EN
Abstrakty
EN
This work presents the results of investigations into the thermal, dynamic mechanical, and tribological properties of epoxy resin reinforced with titanium dioxide nanoparticles and organically modified montmorillonite in varying proportions. Additionally, reinforcement of an aramid honeycomb core was used to compare the properties of samples with and without the honeycomb structure. A modified T-07 tester was employed to assess the wear resistance of materials and metal coatings during rubbing with loose abrasive. Thermodynamic tests were performed using the three-point bending mode on an Instrument DMA SDTA861 thermal analyzer in the temperature range from 20°C to 140°C. It was found that at an operating temperature of around 57°C, the lowest stiffness was observed in the sample without an aramid core and with 2 vol.% particulate filler in the composite. Tribological tests determined the wear resistance, with composites containing montmorillonite exhibiting the highest wear rates, while the sample with the highest proportion of TiO2 nanoparticles was the most wear-resistant. Notably, the wear rate decreased further when the friction area was along the walls of the aramid honeycomb core.
PL
Praca przedstawia wyniki badań właściwości termicznych, dynamiczno-mechanicznych i tribologicznych żywicy epoksydowej wzmacnianej nanocząstkami tlenku tytanu i organicznie modyfikowaną montmorylonitą w różnych proporcjach. Dodatkowo zastosowano wzmocnienie rdzenia z plastra miodu z aramidu, aby porównać właściwości próbek z rdzeniem i bez niego. Do oceny odporności na zużycie materiałów i powłok metalowych użyto zmodyfikowanego testera T-07. Badania termodynamiczne przeprowadzono w trybie zginania trójpunktowego przy użyciu analizatora DMA SDTA861 w zakresie temperatur od 20°C do 140°C. Stwierdzono, że przy temperaturze roboczej około 57°C najmniejszą sztywność wykazywała próbka bez rdzenia aramidowego i z 2% obj. wypełniacza cząsteczkowego. W badaniach tribologicznych oceniono odporność na zużycie, przy czym kompozyty z montmorylonitem wykazały najwyższe wskaźniki zużycia, a próbka z największym udziałem nanocząsteczek TiO2 była najbardziej odporna na zużycie. Warto zauważyć, że współczynnik zużycia zmniejszał się, gdy obszar tarcia znajdował się wzdłuż ścianek rdzenia aramidowego plastra miodu.
Czasopismo
Rocznik
Tom
Strony
119--132
Opis fizyczny
Bibliogr. 50 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Casimir Pulaski Radom University, Faculty of Mechanical Engineering, Stasiecki Str. 54, 26-600 Radom, Poland
Bibliografia
  • 1. Bogoeva-Gaceva G., Dimeski D., Srebrenkoska V.: Friction mechanism of polymers and their composites. Maced. J. Chem. Chem. Eng., vol. 37, no 1, pp. 1–11, 2018, doi: 10.20450/mjcce.2017.1407.
  • 2. Dong M., Zhang H., Tzounis L., Santagiuliana G., Bilotti E. Papageorgiou D.G.: Multifunctional epoxy nanocomposites reinforced by two-dimensional materials. A review, Carbon, vol. 185, pp. 57–81, 2021, doi: 10.1016/j.carbon.2021.09.009.
  • 3. Xiao M., Sun X., Rong H., Bi S., Tang J., Luo X. Ran J.: Low Viscosity Epoxy Structural Adhesive Cured at Room Temperature for Crack Repair of Subway Tunnel. J. Phys.: Conf. Ser., vol. 2101, no. 1, 012047, 2021, doi: 10.1088/1742-6596/2101/1/012047.
  • 4. Siedlaczek P., Sinn G., Peter P., Jandl J., Hantal G., Wriessnig K., Wan-Wendner R. Lichtenegger H.C.: Hygrothermal aging of particle-filled epoxybased composites. Polym. Degrad. Stab., vol. 208, 110248, 2023, doi: 10.1016/j.polymdegradstab.2022.110248.
  • 5. Shadlou S., Alishahi E., Ayatollahi M.R.: Fracture behavior of epoxy nanocomposites reinforced with different carbon nano-reinforcements. Compos. Struct., vol. 95, pp. 577–581, 2013, doi:10.1016/j. compstruct.2012.08.002.
  • 6. Komorek A., Szczepaniak R., Przybyłek P., Krzyżak A., Godzimirski J., Rośkowicz M., Seremak D.: Properties of multi-layered polymer composites with Vectran fiber reinforcement. Compos. Struct., vol. 256, 113045, 2021, doi: 10.1016/j.compstruct.2020.113045.
  • 7. Galos J., Das R., Sutcliffe M.P., MouritzA. P.: Review of balsa core sandwich composite structures. Mater. Des., vol. 221, 111013, 2022, doi: 10.1016/j.matdes.2022.111013.
  • 8. Pujar N.V., Nanjundaradhya N.V., Sharma R.S.: Damping behavior of hybrid composites – A Review. J. Mech. Mech. Eng., vol. 3, no 1, pp. 1–14, 2017.
  • 9. Bunsell A.R., Harris B.: Hybrid carbon and glass fibre composites. Composites, vol. 5, no. 4, pp. 157–164, 1974, doi: 10.1016/0010-4361(74)901074.
  • 10. Swolfs Y., Gorbatikh L., Verpoest I.: Fibre hybridisation in polymer composites: A review. Composites, Part A, vol. 67, pp. 181–200. 2014, doi: 10.1016/j.compositesa.2014.08.027.
  • 11. Swolfs Y., Verpoest I., Gorbatikh L.: Maximizing the hybrid effect in unidirectional hybrid composites. Mater. Des., vol. 93, pp. 39–45, 2016, doi: 10.1016/j.matdes.2015.12.137.
  • 12. Bakar M., Kucharczyk W., Stawarz S., W. Żurowski, “Effect of nanopowders (TiO2 and MMT) and aramid honeycomb core on ablative, thermal and dynamic mechanical properties of epoxy composites. Compos. Struct., vol. 259, 113450, 2021, doi: 10.1016/j.compstruct.2020.113450.
  • 13. Kucharczyk W., Bakar M., W. Żurowski, A. Białkowska, T. Opara and Stawarz S.: Influence of carbon nanotubes, resin matrix and technology of mixture homogenization on ablative and dynamic mechanical properties of epoxy nanocomposites. Compos. Struct., vol. 280, 114801, 2022, doi: 10.1016/j. compstruct.2021.114801.
  • 14. Rao P.S., Mohana K.Ch.K., Vijay S.B.M., Govinda R.P., Surya P.A.: Synthesis of nano titanium dioxide powder using MWP (microwave plasma) and its characterization. International Journal of Modern Engineering Research, vol. 3, no. 2, pp. 1150–1156, 2012.
  • 15. Fujishima A., Zhang X.: Titanium dioxide photocatalysis: present situation and future approaches. C.R. Chim. vol. 9, no. 5-6, pp.750–760, 2006, doi: 10.1016/j.crci.2005.02.055.
  • 16. Hu Y., Tsai H.L., Huang C.L.: Effect of brookite phase on the anatase-rutile transition in titania nanoparticles” J. Eur. Ceram. Soc., vol. 23, no. 5, pp. 691–696, 2003, doi: 10.1016/S0955-2219(02)00194-2.
  • 17. Al-Aja I.A. j, Abd M.M., Jaffer H.I.: Mechanical properties of micro and nano TiO2/epoxy composites. International Journal of Mining, Metallurgy & Mechanical Engineering, vol. 1, no. 2, 2320–4060, 2013.
  • 18. Rajabi L., Mohammadi Z., Derakhshan A.A.: Thermal stability and dynamic mechanical properties of nano and micron-TiO2 particles reinforced epoxy composites: Effect of mixing method. Iranian Journal of Chemical Engineering, vol. 10, no. 1, pp. 16–29, 2013.
  • 19. Merad L., Benyoucef B., Abadie M.J.A., Charles J.P.: Characterization and mechanical properties of epoxy resin reinforced with TiO2 nanoparticles. Exp. Tech., vol. 38, no. 1, pp. 59–66, 2011, doi: 10.1111/j.1747-1567.2011.00797.x.
  • 20. Hsieh T.H., Kinloch A.J., Masania K., Taylor A.C., Sprenger S.: The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer, vol. 51, no 26, 6284–6294, 2010, doi: 10.1016/j.polymer.2010.10.048.
  • 21. Chen X.B., Mao S.S.: Titanium dioxide nanomaterials: synthesis properties, modifications, and applications. Chem. Rev., vol. 107, no. 7, pp. 2891–2959, 2007, doi: 10.1021/cr0500535.
  • 22. Chatterjee A., Islam M.S.: Fabrication and characterization of TiO2-epoxy nanocomposite. Mater. Sci. Eng. A, vol. 487, no. 1–2, pp. 574–585, 2008, doi.: 10.1016/j.msea.2007.11.052.
  • 23. Chang L., Zhang Z., Breidt C., Friedrich K.: Tribological properties of epoxy nanocomposites. I. Enhancement of the wear resistance by nano-TiO2 particle. Wear, vol. 258 no. 1-4, pp. 141-148, 2005, doi: 10.1016/j.wear.2004.09.005.
  • 24. Wetzel B., Rosso P., Haupert F., Friedrich K.: Epoxy nanocomposites – fracture and toughening mechanism. Eng. Fract. Mech., vol. 73, no. 18, pp. 2375–2398, 2006, doi: 10.1016/j.engfracmech. 2006.05.018.
  • 25. George S., Haponiuk J., Thomas S., Reghunath R., Sarath P.S.: Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites. Elsevier: Amsterdam, The Netherlands, 2020.
  • 26. Kan W.H., Chang L.: The mechanisms behind the tribological behaviour of polymer matrix composites reinforced with TiO2 nanoparticles. Wear, vol. 474–475, 203754, 2021, doi: 10.1016/j.wear.2021.203754.
  • 27. Tian J., Tang Q., Li C., Xian G.: Mechanical, bonding and tribological performances of epoxy-based nanocomposite coatings with multiple fillers. J. Appl. Polym. Sci., vol. 139, no. 23, 52303, 2022, doi: 10.1002/app.52303.
  • 28. Massaro M., Cavallaro G., Lazzara G., Riela S.: Covalently modified nanoclays: synthesis, properties and applications. In Clay Nanoparticles; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020, pp. 305–333.
  • 29. Dia sE., Chalse H., Mutha S., Mundhe Y., Ambhore N., Kulkarni A., Mache A.: Review on synthetic/ natural fibers polymer composite filled with nanoclay and their mechanical performance. Mater. Today Proc., vol. 77, no. 3, pp. 916–925, 2023, doi: 10.1016/j.matpr.2022.12.059.
  • 30. Geng J., Qin J., He J.: Preparation of Intercalated Organic Montmorillonite DOPO-MMT by Melting Method and Its Effect on Flame Retardancy to Epoxy Resin. Polymers vol. 13, no. 20, 3496, 2021, doi: 10.3390/polym13203496.
  • 31. Hua X., Lia M., Yanga J., Liua F., Huanga H., Panc H., Yangab H.: In situ fabrication of melamine hydroxy ethylidene diphosphonate wrapped montmorillonite for reducing the fire hazards of epoxy resin. Appl. Clay Sci., vol. 201, 105934. 2021, doi: 10.1016/j.clay.2020.105934.
  • 32. Sand Chee S., Jawaid M.: The Effect of Bi-Functionalized MMT on Morphology, Thermal Stability, Dynamic Mechanical, and Tensile Properties of Epoxy/Organoclay Nanocomposites. Polymers, vol. 11, no. 12, 2012, 2019, doi: 10.3390/polym11122012.
  • 33. Czub P., Bończa-Tomaszewski Z., Penczek P., Pielichowski J. The chemistry and the technology of epoxy resins. Warsaw: Scientifically-Technical Publishing House WNT, 2002, (In Polish].
  • 34. Kucharczyk W., Dusiński D., Żurowski W., Gumiński R.: Effect of composition on ablative properties of epoxy composites modified with expanded perlite. Compos. Struct., vol. 183, pp. 654–662, 2018, doi: 10.1016/j.compstruct.2017.08.047.
  • 35. Stawarz S., Witek N., Kucharczyk W., Bakar M., Stawarz M.: Thermo-protective properties of polymer composites with nano-titanium dioxide. Int. J. Mech. Mater. Des., vo. 15, no. 3, pp. 585–599, 2019, doi: 10.1007/s10999-018-9432-7.
  • 36. Li H., Wang D., Chen H., Liu B., Gao L.: The shielding effect of nano TiO2 on collagen under UV radiation. Macromol. Biosci., vol. 3, no. 7, pp. 351–353. 2003, doi; 10.1002/mabi.200350003.
  • 37. Bakar M., Kucharczyk W., Stawarz S.: Investigation of thermal and ablative properties of modified epoxy resins. Polym. Polym. Compos., vol. 24, no. 8, pp. 617–623, 2016.
  • 38. Bakar M., Kostrzewa M., Białkowska A., Pawelec Z.: Effect of mixing parameters on the mechanical and thermal properties of nanoclay modified epoxy resin", High Perform. Polym., vol. 26, no. 3, pp. 299–306, 2014, doi: 10.1177/0954008313512141.
  • 39. Bakar M., SzymańskaJ., Rudecka J., Fitas J.: Effect of reactive diluents and kaolin on the mechanical properties of epoxy resin. Polym. Polym. Compos., vol. 18, no 9, pp. 503–510, 2010.
  • 40. Szymańska J., Bakar M., Białkowska A., Kostrzewa M.: Study on the adhesive properties of reactive liquid rubber toughened epoxy-clay hybrid nanocomposites. J. Polym. Eng., vol. 38, no. 3, pp. 231– 238, 2018, doi: 10.1515/polyeng-2017-0099.
  • 41. Ciech-Sarzyna Co. Specification of products. Nowa Sarzyna, Poland, 2014 (in Polish).
  • 42. Sigma-Aldrich Co.: Titanium (IV) oxide. (Online]. Available: www.sigmaaldrich.com. [Accessed: 25. Apr. 2022].
  • 43. Anselme P.: Titanium Dioxide.”(Online]. Available: www.cristal.com. [Accessed: 12. Sep. .2022].
  • 44. Bowers J.: Nano Titanium Dioxide. (Online]. Available: www.eoearth.org/view/article/154762, [Accessed: 28. Jun. 2022].
  • 45. ISO 179-1: Plastics – Determination of Charpy impact properties, 2010.
  • 46. Struz J., Trochta M., Hruzik L., Pistacek D., Stawarz S., Kucharczyk W., Rucki M.: Wear and Dynamic Mechanical Analysis (DMA) of Samples Produced via Fused Deposition Modelling (FDM) 3D Printing Method, Polymers, vol. 16, no. 21, 2024; doi: 10.3390/polym16213018.
  • 47. Toledo M.: Thermal Analysis Application No. UC 325. Analysis of a fiber-reinforced composite by TOPEM® and DMA. Application published in Mettler Toledo Thermal Analysis UserCom 32. Schwerzenbach: Mettler Toledo AG, Analytical, Switzerland, 2011.
  • 48. HY i., Hu M., Yao D., Lin H., Zheng B.: Tribological and thermomechanical properties of epoxy-matrix nanocomposites containing montmorillonite nanoclay intercalated with polybutadiene-based quaternary ammonium salt. Plast. Rubber Compos. Process. Appl., vol. 49, no. 9, pp. 1–11, 2020, doi: 10.1080/14658011.2020.1776921.
  • 49. Pan Z., Sun B., Shim V.P.W.,Gu B.: Transient heat generation and thermo-mechanical response of epoxy resin under adiabatic impact compressions. Int. J. Heat Mass Transfer, vol. 95, pp. 874–889, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.12.072.
  • 50. Wos S., Koszela W., Dzierwa A., Pawlus P.: Effects of Operating Conditions and Pit Area Ratio on the Coefficient of Friction of Textured Assemblies in Lubricated Reciprocating Sliding. Materials, vol. 15, no. 22, 7199. 2022, doi. 10.3390/ma15207199.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c3a94ad-f3d1-4378-ac98-c288ed51ffb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.