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Abstract 

In this research paper, a theoretical method of analysis of the first natural frequency of an un-cracked simply 
supported beam in bending mode is presented. The formula of a paradigm is used to determine the natural 

frequency of an un-cracked beam. The converged natural frequency formula of a paradigm is then extended to 

a single edged and multi-edged cracked simply supported beam to evaluate their natural frequency. The main 
attraction of the proposed method is that it gives one more significant way to the researchers to determine the 

natural frequency of cracked beams. The limited fatigue strength, defects like corrosion, corrosion-erosion, and 

corrosion fatigue in the beam are the main causes of formation of edged cracks in beams. Hence the evaluation 
of natural frequency of cracked beams and its use in the inverse problem is of utmost importance to do the 

condition monitoring of the structures by the vibration methods. 
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1. Introduction 

In turbo machinery, elements like beam, shaft is most practical and always remains 

associated with the defects like cracks and notches. These defects appear on the structural 

elements are mainly due to the limited fatigue strength of the material. The elements which 

are subjected to fatigue loading undergo sudden, complete and catastrophic failure. Hence, 

for avoiding such failure, it is required to do the periodic condition monitoring of the 

structures. 

Khalkar and Ramachandran [1] presented the paradigm for the natural frequency of 

un-cracked cantilever beam; afterwards they extended the formula of un-cracked beam to 

cracked cantilever beam. They provided one additional way to the researchers for the 

evaluation of a bending natural frequency of an un-cracked and cracked cantilever beam. 

The main advantage of the presented paradigm is that it gives valid results for the natural 

frequencies at any arbitrary chosen locations. It is observed that [1], when the crack depth 

is kept constant and crack location is varied from the cantilevered end, then stiffness of 

the beam is increased. Vigneshwaran and Behera [2] studied the dynamic characteristics 

of the beam with multiple breathing cracks. For developing theoretical expressions for 

evaluation of natural frequencies and mode shapes, a systematic approach has been 

adopted in this study. For performing the dynamic analysis, an elastic simply supported 

beam with two breathing cracks is considered. The concept of influence coefficient is used 

to determine the cracked beam stiffness. The influence coefficients are calculated by using 

strain energy release rate and castigiliano's theorem. Eigen value approach is also used to 
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evaluate the stiffness and natural frequencies for the multiple cracked beams.  It is seen 

that the presence of cracks causes to change the stiffness and natural frequency of the 

simply supported beam. Zhong and Oyadiji [3] considered the polynomial function for the 

obtaining the transverse deflection of the cracked beam. The polynomial function 

represents the effect of a crack, to the polynomial function which represents the response 

of the intact beam. Approximate closed-form analytical expressions are derived for the 

natural frequencies of a random mode of transverse vibration of a cracked simply 

supported beam by means of a roving mass using the Rayleigh's method. Due to the roving 

of the mass along the cracked beam its natural frequencies get changed. So the roving 

mass can provide additional spatial information for damage detection of the beam. Teidj 

et al. [4] used an explicit analytical model for assessing the effect of a crack on beam strain 

energy, the beam first resonance frequencies were evaluated as function of a single crack 

defect characteristics. They used the fracture mechanics approach for obtaining the crack 

equations. Naik and Maiti [5] presented the vibration based crack detection technique for 

circumferential cracks in empty straight horizontal pipes in different orientations. 

Rotational spring is used to modelled the crack. The stiffness of the cracked beam is 

determined by experimental and vibration method. Thereafter, sensitivity of the vibration 

method for prediction of crack location on variations in experimental data has been 

examined. Dirr and Schmalhorst studied [6] the propagating crack that causes the slender 

uniform round shaft to shake about its major axis. Experiments using a stationary shaft are 

performed as well. For measuring the crack depth and the actual shape of the cracked cross 

section, beach marks are used. Singh and Tiwari [7] have studied and presented a two 

stage identification methodology, which identify the number of cracks and crack 

parameters. In the first stage, a multi-crack detection and its localization algorithm have 

developed. In the later stage of the algorithm, the size and the accurate location of cracks 

are obtained by using multi-objective genetic algorithms. Turgut and Mesut [8] analyzed 

have studied the Timoshenko beams having different boundary conditions. To study the 

free vibration characteristics of Timoshenko beams, a Lagrange equation is used. The first 

eight natural frequencies of Timoshenko beam are considered and tabulated for different 

thickness-to-length ratio of a beam. From this study, it is seen that shown tabulated results 

are useful to designers. Papadopoulos [9] investigated the torsional vibrations of a rotor 

with a transverse crack. For the modeling of the crack a local flexibility matrix is 

considered. The local flexibility matrix is calculated analytically and measured 

experimentally. The graphs between the first three natural frequencies and crack 

parameters are plotted. Khalkar and Ramachandran [10] have studied the EN 8 and EN 47 

cracked cantilever beam for the top side and bottom side transversed cracks. Through this 

research study they found that natural frequency of free vibration is not the function of the 

crack depth for the same configurations.Khalkar and Ramachandran [11] have studied the 

steel cracked cantilever beam for the single sided and double sided v-shaped cracks. 

Through this research study [11], it is observed that the obtained natural frequency of free 

vibration for the rectangular shape cracked case and v shape cracked case is almostsame 

for the same configuration. Khalkar and Ramachandran [12] have studied the EN 47 

cracked cantilever beam for the transverse and oblique cracks. Through this research study 

they have [12] found that the natural frequency more abruptly changes for the case of 

transverse cracked beam than the case of oblique cracked beam for the same configuration. 
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They have also found that the natural frequency of an un-cracked cantilever beam is almost 

similar to the natural frequency of a cracked beam which carries crack almost towards the 

free end. Khalkar and Ramachandran [13] have studied the spring steel cantilever beams 

for various crack geometries i.e V-shaped, U-shaped and rectangular shaped by vibration 

analysis. Through this research study they have found that the effects of crack geometries 

on the stiffness have a minor effect. They have also found that the free vibration based 

method can effectively predict the crack location and depth in the structure irrespective to 

the crack geometries. 

From the literature survey, it has been found that there is no existence of an integration 

based approach paradigm for a simply supported beam to evaluate its natural frequency. 

None of the researchers has worked on the paradigm of a simply supported beam. In this 

study, the derived formula of a paradigm of a simply supported beam is applied to the 

cracked simply supported beam for natural frequency. This paradigm gives the valid 

results for the natural frequency of an un-cracked and cracked simply supported beam. 

Static (zero frequency deflection) analysis is carried out by ANSYS software on un-

crackedand cracked models to get the stiffness parameter of un-cracked case and various 

cracked cases, afterward the value of obtained stiffness of any cracked case is substituted 

in the paradigm formula to get its natural frequency in the bending mode. To validate the 

results of natural frequency, modal analysis numerical experiments are conducted on the 

same models by using ANSYS simulation.  

2. Theory 

The schematic diagram of a simply supported beam subjected to zero frequency point load 

is as shown in Figure 1. By comparing deflection curve of Figure 5 and Figure 6, it is 

observed that the deflection curve of a simply supported beam at zero frequency is 

approximately similar to the curve obtained during vibration with first bending natural 

frequency. 

 

Figure 1. A schematic diagram of a simply supported beam subjected to zero frequency 

central point load 
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Let ρ' and L be the mass of the beam per unit length and length of the beam 

respectively, z is the displacement of midpoint of simply supported beam. 

Mass of simply supported beam, m = ρ' ∙ L. 

Therefore, the mass of the element is  ρ' ∙ dx. 

Consider a small element dx at a distance x from the left hand support of a simply 

supported beam as shown in Figure 1. 

                                                  𝑀𝑥 =  − 𝑊  [(𝐿/2)  −  𝑥] 

                                           𝐸𝐼
𝑑2𝑦

𝑑𝑥2
 =  −𝑀𝑥 =   𝑊 [(𝐿/2)  − 𝑥] 

    (1) 

Integrate Equation (1) 
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We have the deflection at the midpoint of simply supported beam, 𝑧 =
𝑊𝐿3

48𝐸𝐼
. 

Substituting value of W in Equation (5) 
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Equation (6) gives displacement of the element in the transverse direction 
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3
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Equation (7) represents the velocity of the element. 

Kinetic energy of the element  

1
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Apply energy method i.e. Total kinetic energy + Total potential energy = Constant, to 

un-cracked simply supported beam. After solving it, Equation (11) gets converged this 

represents the natural frequency of an un-cracked simply supported beam.  

𝑓𝑛 =
1

2𝜋
√

𝐾

0.47143 𝑚
                                                      (11) 

where, 0.47143m and K are the effective mass and stiffness of an un-cracked simply 

supported beam respectively.  

Equation (11) is also applied to the cracked beam in this research study to get the 

natural frequency of any cracked case of interest. Initially, the static analysis of a cracked 

beam is carried out by using ANSYS software to get the zero frequency deflection. To get 

the zero frequency deflection, an elastic limit point load is applied on the beam, i.e. 100 

N, on its middle point. Then the stiffness of cracked case of interest is computed by using 

the conventional formula (Elastic limit point load / zero frequency deflection). The 

calculated stiffness is then substituted in Equation (11) to get the natural frequency of any 

cracked case of simply supported beam. 

3. Simulated crack configurations 

In this study, natural vibration of an edge-cracked simply supported beam is studied. 

Fifteen cracked specimens are considered in this case study to find out the natural 

frequency of such cracked specimen by proposed theoretical method and by ANSYS as 

well. 

Specimens of EN 8 materials are used to study the effect of cracks on natural 

frequency. EN 8 material is tested in ELCA Lab , Pune, India, to get the material properties 

i.e. Modulus of Elasticity (E) is 2.104 x 1011 N/m2, ρ = 7820 kg/m3. 

Geometric properties: The length and cross sectional area of the beam are 0.36 m and 

0.02x 0.02 m2 respectively. 

The value of Poisson’s ratio is assumed as 0.3, i.e. cracked specimensare of EN 8 

(spring steel) material 

The main case is divided into three cases: case 1, case 2 and case 3. Details of each 

case are given below. 

Case 1: In this case nine specimens are considered and each specimen carries one 

transverse crack as shown in Figure 2. This case is again subdivided into 3 sub cases, in 

the first sub case, 100 mm crack location is selected from the left hand support of the beam 

and at this location crack depth is varied from 5 mm to 15 mm by an interval of 5 mm. 

The second and the third sub cases are similar with the first sub case, the only difference 

is that instead of 100 mm crack location, 200 mm and 300 mm crack location is chosen 

for the second and third sub case respectively.  

Case 2: In this case three specimens are considered and each specimen carries two 

transverse cracks as shown in Figure 3. In this case, 100 mm and 200 mm crack locations 

are chosen for the first and the second crack from the left hand support of the beam and at 

these locations cracks depths are varied from 5 mm to 15 mm by an interval of 5 mm.  

Case 3: In this case three specimens are considered and each specimen carries three 

transverse cracks as shown in Figure 4. In this case, 100 mm, 200 mm and 300 mm crack 
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locations are chosen for the first, second and the third crack from left hand support of the 

beam and at these locations cracks depths are varied from 5 mm to 15 mm by an interval 

of 5 mm. 

 

Figure 2. A schematic diagram of a cracked simply supported beam  

with single crack 

 

Figure 3. A schematic diagram of a cracked simply supported beam  

with two cracks 

 

Figure 4. A schematic diagram of a cracked simply supported beam  

with three cracks 

4. Finite element modelling and analysis 

ANSYS [14] finite element program is used to determine natural frequencies and zero 

frequency deflections of cracked beams. A solid 186 structural solid element is selected 

for modelling the cracked simply supported beam model. Finite element boundary 

conditions are applied on both the extreme ends of simply supported beam along Y-

direction. Static and modal analyses are carried out on each specimen to get zero frequency 

deflection and natural frequency. In static analysis 100 N loads is applied at the center of 

simply supported beam. Finite Element Analysis (FEA) plot of zero frequency deflection 

and natural frequency are shown in the Figure 5 and Figure 6 respectively. In this research 

study an open edge cracks are considered and 0.5 mm crack width is chosen for all the 

cracked cases. 
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Figure 5. Zero frequency deflection plot of a cracked simply supported beam; 

L1/L = 0.556; a1 = 15 mm 

 

Figure 6. Natural frequency plot of a cracked simply supported beam; 

L1/L = 0.556; a1 = 15 mm 

5. Results and discussion 

By Finite Element Analysis, the natural frequencies for the various cracked cases are 

found to confirm the results obtained for the natural frequencies by a proposed theoretical 

method. The zero frequency deflection and stiffness results for single-edge cracked 

specimens are presented in Table 1 and 2. Table 3-5 presented the natural frequency results 

obtained by proposed theoretical method and by FEA analysis for single-edged cracked 

cases. Table 6 and 7presented the natural frequency results for the two-edged and three-

edged cracked cases respectively. 

Table 1. Zero frequency deflection of a simply supported beam 

 with single-edged crack, m 

Crack location 

Crack depth mm 

L1 = 100 mm 

 

L1 = 200 mm 

 

L1 = 300 mm 

 

a1 = 5 0.359e-4 0.376e-4 0.354e-4 

a2 = 10 0.402e-4 0.495e-4 0.370e-4 

a3 = 15 0.668e-4 0.114e-3 0.451e-4 
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Table 2. Stiffness of a simply supported beam with single-edged crack, N/m 

Crack location 

Crack depth mm 

L1 = 100 mm 

 

L1 = 200 mm 

 

L1 = 300 mm 

 

a1 = 5 2785515.32 2659574.46 2824858.75 

a2 = 10 2487562.19 2020202.02 2702702.7 

a3 = 15 1497005.98 877192.98 2217294.9 

Table 3. Comparison of first bending natural frequency of a simply supported beam with 

single-edged crack for 100 mm crack location, Hz 

Crack depth 

mm 

Methods L1 = 100 mm 

 

Natural frequency Hz % Deviation 

a1 = 5 
Proposed method 364.73 

2.697 
ANSYS 354.89 

a2 = 10 
Proposed method 344.52 

3.941 
ANSYS 330.94 

a3 = 15 
Proposedmethod 267.26 

6.095 
ANSYS 250.97 

Table 4. Comparison of first bending natural frequency of a simply supported beam with 

single-edged crack for 200 mm crack location, Hz 

Crack 

depth mm 

Methods L1 = 200 mm 

 

Natural frequency Hz % Deviation 

a1 = 5 
Proposed method 356.23 

1.482 
ANSYS 350.95 

a2 = 10 
Proposed method 310.47 

-1.288 
ANSYS 314.47 

a3 = 15 
Proposed method 204.58 

-7.312 
ANSYS 219.54 

Table 5. Comparison of first bending natural frequency of a simply supported beam with 

single-edged crack for 300 mm crack location, Hz 

Crack depth 

mm 

Methods L1 = 300 mm 

 

Natural frequency Hz % Deviation 

a1 = 5 
Proposed method 367.13 

2.369 
ANSYS 358.43 

a2 = 10 
Proposed method 359.26 

3.462 
ANSYS 346.82 

a3 = 15 
Proposed method 325.41 

7.78 
ANSYS 300.09 
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Table 6. Comparison of first bending natural frequency of a simply supported beam with 

double-edged crack, Hz 

Crack depth 

mm 

Methods L1 =100 mm, L2 = 200 mm 

 

Natural frequency Hz % Deviation 

a1 = a2 = 5 
Proposed method 351.28 

1.708 
ANSYS 345.28 

a1 = a2 = 10 
Proposed method 296.56 

0.977 
ANSYS 293.66 

a1 = a2 = 15 
Proposed method 183.39 

-1.041 
ANSYS 185.30 

Table 7. Comparison of first bending natural frequency of a simply supported beam with 

three-edged crack, Hz 

Crack depth mm Methods L1 = 100 mm, L2 = 200 mm, L3 = 300 mm 

 

Natural frequency Hz % Deviation 

a1 = a2 = a3= 5 
Proposed method 349.94 

2.026 
ANSYS 342.85 

a1 = a2 = a3= 10 
Proposed method 292.03 

1.664 
ANSYS 287.17 

a1 = a2 = a3= 15 
Proposed method 180.24 

-0.066 
ANSYS 180.36 

From Table 3 - Table 7, it is observed that the error for the natural frequency between 

the proposed method and the FEA analysis is less than 8% for all the cracked cases i.e. 1-

edged, 2-edged and3-edged cracked cases.  

From Figures 7-9, it is observed that value of natural frequencies obtained by proposed 

theoretical method and FEA analysis gives good agreement. For all the cracked cases, the 

results of natural frequencies obtained by the proposed theoretical method are valid. It is 

also found that for 2-edged and 3-edgedcracked specimens, the results obtained by a 

proposed theoretical method for the natural frequencies are more accurate than those of 1-

edged cracked specimens. The main advantage of the proposed mathematical model is that 

it gives outstanding results at all sections of the beam.  
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Figure 7. Comparison of first bending natural frequency of a simply supported beam 

with single-edged crack for 100 mm, 200 mm and 300 mm crack location 

 

Figure 8. Comparison of first bending natural frequency of a simply supported beam 

with two-edged cracks: L1/L = 0.278; L2/L = 0.556 

 

Figure 9. Comparison of first bending natural frequency of a simply supported beam 

with three-edged cracks: L1/L = 0.278; L2/L= 0.556; L3/L = 0.834 
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Figure 10. Variation of natural frequency with crack location ratio for single-edged 

cracked cases 

From Figure 10, it is found that as the location of the crack increases from the left hand 

support of the simply supported beam by keeping the crack depth constant then natural 

frequency decreases up to midpoint of the beam, and again it increases for all the crack 

locations which are present between the midpoint of the beam and the right hand support 

of the beam. It means that the presence of crack at the midpoint of the beam produces 

largest effect of damping as compared to the presence of other cracks on other locations 

on the beam. At midpoint of the beam the effect of damping remains largest, and it is 

mainly due to presence of largest bending moment at the midpoint of the beam. The effect 

of bending moment remain less for all the cracked cases in which cracks remain present 

between midpoint of the beam and right hand support of the beam or  between the midpoint 

of the beam and the left hand supportof the beam. Hence the magnitude natural frequency 

is found to be on higher side for such cracked cases. 

6. Conclusion 

A. The converge formula of  the proposed theoretical method of an un-cracked simply 

supported  beam can be extended to 1-edged or 2-edged or 3-edged cracked simply 

supported beam as it gives valid results for the natural frequency. 

B. The proposed theoretical method gives one more significant way to the researchers 

to compute the natural frequency of cracked beam. 

C. Natural frequencies obtained by the proposed theoretical method and ANSYS 

simulation are in good agreement which shows the versatility of the proposed 

method. 

D. When location of the crack is increased from left hand support to the midpoint of a 

simply supported beam by keeping the crack depth constant, then the natural 

frequency decreased. 

E. When location of the crack is increased from midpoint of the beam to the right hand 

support of a simply supported beam; then the natural frequency again increased.  
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