Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To examine the feasibility of the laminar boundary layer (LBL), vortex shedding (VS) tonal noise modelling using unsteady Reynolds-averaged Navier-Stokes (URANS) was investigated for the non-symmetric S834 airfoil. A transition SST turbulence model was used to model the laminar-turbulent transition and its vital influence on the laminar bubble and hydrodynamic instabilities generation. The influence of turbulence on the unsteady vortex patterns was investigated. Hence, the hybrid aeroacoustic analysis with Lighthill analogy was conducted to obtain the acoustic pressure field. The approach allowed us to model hydrodynamic instabilities and the resulting VS tonal noise. The frequency of VS matched the experimental data, giving the same 1/3 octave tonal peak only for a limited freestream turbulence regime. The simplification of the present method did not allow us to model the aeroacoustic feedback loop, and resulted in lack of instabilities for higher freestream turbulence.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--17
Opis fizyczny
Bibliogr. 23 poz., fot., rys., tab.
Twórcy
autor
- Department of Aerodynamics, Lukasiewicz Research Network - Institute of Aviation Warsaw, Poland
autor
- Department of Aerodynamics, Lukasiewicz Research Network - Institute of Aviation Warsaw, Poland
Bibliografia
- [1] Rizzi, S.A. “Urban Air Mobility Noise: Current Practice, Gaps, and Recommendations.” No. NASA/TP-20205007433 (2020).
- [2] Brooks, F., Pope, D., and Marcolini, A. Airfoil Self-Noise and Prediction, No. L-16528, NASA, 1989.
- [3] Paterson, R.W., Vogt, P.G., Fink, M.R., and Munch, C.L. “Vortex Noise of Isolated Airfoils.” Journal of Aircraft Vol. 10 No. 5 (1973): pp. 296-302.
- [4] Tam, C.K.W. “Discrete Tones of Isolated Airfoils.” The Journal of the Acoustical Society of America Vol. 55 No. 6 (1974): p. 5.
- [5] Arbey, H. and Bataille, J. “Noise Generated by Airfoil Profiles Placed in a Uniform Laminar Flow.” Journal of Fluid Mechanics Vol. 134 No. 1 (1983): p. 33.
- [6] McAlpine, A., Nash, E.C., and Lowson, M.V. “On the Generation of Discrete Frequency Tones by the Flow around an Aerofoil.” Journal of Sound and Vibration Vol. 222 No. 5 (1999): pp. 753-779.
- [7] Lowson, M., Fiddes, S., and Nash, E. “Laminar Boundary Layer Aero-Acoustic Instabilities.” 32nd Aerospace Sciences Meeting and Exhibi. American Institute of Aeronautics and Astronautics. Reno, NV, U.S.A, 1994.
- [8] Pröbsting, S., Serpieri, J., and Scarano, F. “Experimental Investigation of Aerofoil Tonal Noise Generation.”Journal of Fluid Mechanics Vol. 747 (2014): pp. 656-687.
- [9] Casalino, D., Grande, E., Romani, G., Ragni, D., and Avallone, F. “Definition of a Benchmark for Low Reynolds Number Propeller Aeroacoustics.” Aerospace Science and Technology Vol. 113 (2021): p. 106707.
- [10] Menter, F., Hüppe, A., Matyushenko, A., and Kolmogorov, D. “An Overview of Hybrid RANS-LES Models Developed for Industrial CFD.” Applied Sciences Vol. 11 No. 6 (2021): p. 2459.
- [11] Sandberg, R.D., Jones, L.E., Sandham, N.D., and Joseph, P.F. “Direct Numerical Simulations of Tonal Noise Generated by Laminar Flow Past Airfoils.” Journal of Sound and Vibration Vol. 320 No. 4-5 (2009): pp. 838-858.
- [12] Desquesnes, G., Terracol, M., and Sagaut, P. “Numerical Investigation of the Tone Noise Mechanism over Laminar Airfoils.” Journal of Fluid Mechanics Vol. 591 (2007): pp. 155-182.
- [13] De Gennaro, M., Kühnelt, H., and Zanon, A. “Numerical Prediction of the Tonal Airborne Noise for a NACA0012 Aerofoil at Moderate Reynolds Number using a Transitional URANS Approach.” Archives of Acoustics Vol. 42 No. 4 (2017): pp. 653-675.
- [14] Oerlemans, S. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines; Period of Performance: August 23, 2002 through March 31, 2004, NREL/SR-500-35339, 15007773. 2004.
- [15] Langtry, R.B. and Menter, F.R. “Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes.” AIAA Journal Vol. 47 No. 12 (2009): pp. 2894-2906.
- [16] Dick, E. and Kubacki, S. “Transition Models for Turbomachinery Boundary Layer Flows: A Review.”International Journal of Turbomachinery, Propulsion and Power Vol. 2 No. 2 (2017): p. 4.
- [17] Rezaeiha, A., Montazeri, H., and Blocken, B. “On the Accuracy of Turbulence Models for CFD Simulationsof Vertical Axis Wind Turbines.” Energy Vol. 180 (2019): pp. 838-857.
- [18] Ansys Inc. “Ansys Fluent, Release 21.1, Theory Guide”, Canonsburg, Pennsylvania, USA, 2021.
- [19] Curle, N. “The Influence of Solid Boundaries upon Aerodynamic Sound.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 231 No. 1187 (1955): pp. 505-514.
- [20] Ffowcs-Williams, J.E.F. and Hawkings, D.L. “Sound Generation by Turbulence and Surfaces in Arbitrary Motion.” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 264 No. 1151 (1969): pp. 321-342.
- [21] Lighthill, M. “On Sound Generated Aerodynamically I. General Theory.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 211 No. 1107 (1952): pp. 564-587.
- [22] Lighthill, M. “On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 222 No. 1148 (1954): pp. 1-32.
- [23] Free Field Technologies SA. “ACTRAN VI 2021.1 User’s Guide”, Belgium, 2020.
Uwagi
1. This work has been supported by the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw (UW), within grant No. G84-19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c35a44c-cd60-4266-b0f3-2713810b3168
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.