PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastic-plastic analysis for circumferential through crack at boundary of semi’s brace under beam wave

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to ensure the safety and reliability of the horizontal brace of semi-submersible platform (SEMI) which functions as the supporting structure in SEMI, this article presents an elastic-plastic method to analyze the variations of the crack tip opening displacement, elastic zone and plastic zone of the cracked section of the horizontal brace under beam wave. The brace of the SEMI was assumed to be located a circumferential through crack at its boundary in this article. In addition, the cracked section of the brace has been divided into crack zone, tensile plastic zone, elastic zone and compressive plastic zone in the presented theoretical model. Moreover, the closed form of the solution has been found in this article which is especially suitable solving complicated problems in practical engineering application. Also, a typical new-generation SEMI that is in practical use was selected to analyze the variation tendency of the cracked brace’s parameters using the proposed model which could give good suggestion to semi-submersible platform designers and managers.
Rocznik
Tom
Strony
106--113
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Southwest Petroleum University, Chengdu, China
autor
  • Southwest Petroleum University, Chengdu, China
autor
  • School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, China
Bibliografia
  • 1. Colin, H., Espen, F., Martyn, T. (2014). Worldwide Offshore Accident Databank, Det Norske Veritas, Oslo.
  • 2. Moan, T. (2009). Development of accidental collapse limit state for offshore structures. Structural Safety, 31, 124–135.
  • 3. Zaron, E., Fitzpatrick, P., Patrick J. (2015). Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the deep-water horizontal disaster. Frontiers of Earth Science, 9, 605–636.
  • 4. Giovani, D., Mariana, S. (2013). Risk Based in Inspection Applied to a Semi-Submersible Platform, Offshore Technology Conference, Rio de Janeiro, Brazil.
  • 5. Sanders, J. L. (1987). Dugdale model for circumferential through-cracks in pipes loaded by bending. International Journal of Fracture, 34(1), 71–78.
  • 6. Fei, W., Zheng, L. (2016). Analytical solution for crack growthing of semi-submersible platform’s horizontal brace. Journal of Engineering Research. 4(1), 146–158.
  • 7. Brighenti, R. (2000). Surface cracks in shells under different hoop stress distributions, International Journal of Pressure Vessels and Piping, 77(9), 503–509.
  • 8. Fei, W., Zheng, L. (2017). Effects of wave loads on the strength of SEMI’s horizontal brace. Proceedings of the Institution of Civil Engineers: Maritime Engineering. 170(2), 163–172.
  • 9. Alexandrov, S., Zerbst, U., Schwalbe, H. (1998). Limit load solution for cracked tubular T-joints loaded in tension. Fatigue & Fracture of Engineering Materials & Structures, 21(10), 1249–1257.
  • 10. Lie, S., Chiew, S., Lee, C. (2004). Fatigue Performance of Cracked Tubular T Joints under Combined Loads. Journal of Structure Engineering, 130(4), 572–581.
  • 11. Maier, G. (1985). Case Histories in Offshore Engineering, Springer Vienna Publishers.
  • 12. Reason, J. (997). Managing the Risks of Organizational Accidents, Ashgate Publishers.
  • 13. Inge, L., Odd, O. (2005) Risk assessment of loss of structural integrity of a floating production platform due to gross errors, Marine Structures, 17(7), 551–573.
  • 14. Moan, T., Berge, S., Holthe, K. (1981). Analysis of the fatigue failure of the Alexander L. Kielland. ASME Winter Annual Meeting, Washington, DC.
  • 15. Nicholson, J.W., Weidman, S.T., Simmonds, J.G. (1983). Sanders’ energy-release rate integral for a circumferentially cracked cylindrical shell. Journal of Applied Mechanics, 50(2), 373–378.
  • 16. Sanders, J. L. (1972). Closed form solution to the semi-infinite cylindrical shell problem. Rotterdam Dam: Delft University Press.
  • 17. Sanders, J. L. (1980). On stress boundary conditions in shell theory. Journal of Applied Mechanics, 47(1), 202–204.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c31641c-e318-46c2-9063-4d10d8e905e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.