Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the physical equations describing the isotropic and anisotropic materials. Orthotropic material and monotropic are special varieties of anisotropy. Constructional steel, pine wood and polyester-glass composite were tested. The beams were made from these materials. The beams were subjected to external loads. The external load caused internal forces in beams. Calculations of stress distribution were carried out by finite element method (Patran – Nastran software). The calculation results allowed for precise illustrate the distribution of stress especially in layered materials. The load is basically a transmitted through the strong layers of composite. This is illustrated in the figures. Wood is materials of a layered structure and is classified as inhomogeneous materials. Whereas steel is considered as a homogeneous material. Passing from the level of microscopic inhomogeneity to the macroscopic homogeneous level is called homogenization. This method formulates the macroscopic description by homogenizing microscopic properties. For the purpose of mathematical description of a material, the real centre can be substituted by a homogeneous centre. The homogenization method is commonly used to describe the properties of rocks, wood, composites, reinforced concrete, as well as human osseous tissues. The description of the mechanical properties of isotropic materials is based on the theory of elasticity, while the anisotropic materials are based on the anisotropic theory of elasticity. Calculations of anisotropic materials are quite complicated (large number of physical quantities) and sometimes-approximate results are obtained.
Wydawca
Czasopismo
Rocznik
Tom
Strony
207--214
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Gdynia Maritime University Faculty of Marine Engineering Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 5586371, fax: +48 58 5586399
Bibliografia
- [1] Arcan, M., Hashin, Z., Voloshin, A., A method to produce uniform plane-stress states with applications fiber-reinforced materials, Exp. Mech., Vol. 18, pp. 141-145, 1984.
- [2] Auriault, J. L., Cailleire, D., Quelques remarques sur les méthodes d`homogénéisation, Rev. Franç. Geotech., No. 49, pp. 43-50, 1989.
- [3] Boding, J., Jayne, B. A., Mechanics of wood and wood composites, Van Nostrand Reinhold, New York 1982.
- [4] German, J., Podstawy mechaniki kompozytów włóknistych, Politechnika Krakowska, Krakow 2001.
- [5] Haberzak, A., Współczynnikisprężystości postaciowejw materiałach anizotropowych, Przemysł Drzewny, Nr 6, pp. 18-25, 1977.
- [6] Jayne, B. A., Theory and design of wood and fiber composite materials, Syracuse University Press, New York – Cincinnati – London – Melbourne 1972.
- [7] Kyzioł, L., Drewno modyfikowane na konstrukcje morskie, AMW, Gdynia 2010.
- [8] Kyzioł, L., Analiza właściwości drewna konstrukcyjnego nasyconego powierzchniowo polimerem MM, Akademia Marynarki Wojennej w Gdyni, Nr 156 A, Gdynia 2004.
- [9] Kyzioł, L., Jastrzębska, M., Określenie wybranych właściwości mechanicznych odpadowych materiałów kompozytowych, Logistyka, 3, pp. 2758-2763, 2015.
- [10] Kyzioł, L., Podstawy konstrukcji maszyn, cz. I, AMW, Gdynia 1998.
- [11] Łydżba, D., Zastosowanie metody asymptotycznej homogenizacji w mechanice gruntów i skał,Politechnika Wrocławska, Wroclaw 2002.
- [12] Rocens, K. A., Technologičeskije regulirovanie svojstv dreviesiny, Zinatyje, Riga 1979.
- [13] Wilczyński, A. P., Polimerowe kompozyty włókniste, WNT, Warszawa 1996.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c2e2c13-772c-4fee-8b53-ec983aec5efe