PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuel lubricity and its laboratory evaluation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Smarność paliw i jej ocena laboratoryjna
Języki publikacji
EN
Abstrakty
EN
This literature review paper discusses the subject of lubricating properties of liquid hydrocarbon-based fuels and laboratory bench tests applied in lubricity evaluation. The analysis was made in order to highlight the importance of fuel lubricity evaluation, especially application of relatively rapid laboratory tests. Inadequate lubricity may lead to an excessive wear of fuel injection system components and in some cases - even to catastrophic failure what, in turn, manifests itself in higher replacement costs, shortened service life, inefficient engine performance and increased tailpipe emissions. Nowadays, when more and more rigorous emissions standards for transportation fuels are continuously established, the satisfactory fuel lubricity is of great importance. Lubricity determines the antiwear behaviour of the lubricant over the regime of boundary lubrication when the moving surfaces are separated only by a very thin fluid film adhering to them. The most important role in forming such films is played by polar compounds and aromatic hydrocarbons that are naturally present in crude oil derived fuels. However, the refinery processes applied in fuel production remove them, thus reducing the lubricity. Fuel lubricity problems were first defined in the mid-1960s and resulted from more severe refining and treatment processes applied in the production of aviation kerosene. In those days, injection equipment failures in aircraft turbine engines were reported. Then, in the late 1980s, similar problems were revealed after the implementation by US and NATO forces of “The Single Fuel Forward” policy which mandated that all military vehicles must be operable with kerosene-based fuel. Lubricity problems regarding diesel fuel emerged in the late 1990s when some countries set limits on the sulphur and aromatic hydrocarbon content in this fuel. The paraffinic diesel fuel produced by the Fischer-Tropsch synthesis or hydrotreatment process that is more commonly applied nowadays also possesses very low lubricating properties. Generally, to provide good fuel lubricity, various additives are applied andbench tests are mostly employed to estimatetheir effectiveness. Since 1960 many test rigs have been developed. Several interlaboratory test programs were carried out to select the best bench tests that would show good correlation with field experience. Among them, only BOCLE, HFFR, and SLBOCLE test methods become industry standards.
PL
W artykule przedstawiono tematykę właściwości smarnych ciekłych paliw węglowodorowych oraz przegląd laboratoryjnych metod oceny smarności. Celem przeprowadzenia niniejszej analizy była chęć podkreślenia ważności problematyki oceny smarności paliw, w szczególności za pomocą relatywnie szybkich metod laboratoryjnych. Niewłaściwa smarność może prowadzić do nadmiernego zużycia elementów układu wtrysku paliwa, a w pewnych przypadkach - nawet do uszkodzenia aparatury wtryskowej, co w konsekwencji powoduje wyższe koszty wymiany, krótszą żywotność, zmniejszone osiągi silnika i wzrost emisji. Obecnie, w sytuacji kiedy normy emisji są coraz bardziej restrykcyjne, smarność jest szczególnie istotnym parametrem określającym jakość paliw. Smarność określa właściwości przeciwzużyciowe w warunkach tarcia granicznego. Tarcie zachodzi wówczas pomiędzy bardzo cienkimi warstwami substancji smarującej zaadsorbowanymi na powierzchniach współpracujących. Najważniejszą rolę w tworzeniu takich warstw odgrywają związki polarne oraz węglowodory aromatyczne występujące w ropie naftowej. Jednakże, w wyniku procesów rafineryjnych stosowanych podczas produkcji paliw, większość związków polarnych jest usuwana, co w efekcie prowadzi do obniżenia smarności. Problem smarności paliw pojawił się po raz pierwszy wlatach sześćdziesiątych XX wieku i był spowodowany stosowaniem głębokiego rafinowania oraz procesów uszlachetniania stosowanych w produkcji nafty lotniczej. Konsekwencją stosowania tak wytwarzanego paliwa było wiele przypadków uszkodzeń aparatury wtryskowej turbinowych silników lotniczych. Później, w latach osiemdziesiątych, problemy wynikające z niedostatecznej smarności paliw pojawiły się po wdrożeniu przez Stany Zjednoczone i NATO tzw. koncepcji jednolitego paliwa pola walki (The Single Fuel Forward”), która polega na stosowaniu we wszystkich pojazdach wojskowych paliwa przeznaczonego standardowo do silników odrzutowych. Z kolei, problem smarności oleju napędowego pojawił się na początku lat dziewięćdziesiątych, kiedy zaczęto wprowadzać ograniczenia dotyczące zawartości siarki i węglowodorów aromatycznych w tym paliwie. Parafinowy olej napędowy produkowany metodą syntezy Fischera-Tropscha lub w procesach uwodornienia, który jest coraz powszechniej stosowany, również charakteryzuje się niską smarnością. Aby nadać paliwom odpowiednie właściwości smarne stosowane są różnego rodzaju dodatki. Ocenę skutecznościdziałania tych dodatków prowadzi się najczęściej za pomocą metod laboratoryjnych. Od momentu pojawienia się problemów wynikających z niedostatecznej smarności paliw zostało opracowanychwiele metod laboratoryjnych oceny tego parametru. Przeprowadzono również kilka programów badań międzylaboratoryjnych mających na celu wybranie testów wykazujących największą korelację z badaniami w warunkach rzeczywistych. Spośród ocenianych testów tylko BOCLE, HFFR oraz SLBOCLE uzyskały status metod badań normowych.
Rocznik
Strony
47--59
Opis fizyczny
Bibliogr. 76 poz., rys., wykr.
Twórcy
  • Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Mechanical Engineering, Malczewskiego29, 26-600 Radom, Poland
Bibliografia
  • [1] Campbell W.E., Summit N.J., (1939) Studies in boundary lubrication. Variables influencing the coefficient of static friction between clean and lubricated metal surfaces. ASME Transactions, October 1937, pp 633-641
  • [2] Mc Collough J., Check Jr. H.F. (2010) The Baleen whales’ saving grace: The introduction of petroleum based products in the market and its impact on the whaling industry. Sustainability, Vol. 2, pp 3142-3157, https://doi.org/10.3390/su2103142
  • [3] Archbutt L., Deeley R.M. (1900) Lubrication and Lubricants. A Treatise on the Theory and Practice of Lubrication, and on the Nature, Properties, and Testing of Lubricants. Charles Griffin & Company, London, XXIV + 451p
  • [4] Fein R., Kreuz K.L. (1965) Chemistry of boundary lubrication of steel by hydrocarbons. ASLE Transactions. Vol. 8, pp 29-38, https://doi.org/10.1080/05698196508972076
  • [5] Hsieh P.Y., Bruno T.J. (2015) A perspective on the origin of lubricity in petroleum distillate motor fuels. Fuel Processing Technology. Vol. 129, pp 52-60, https://doi.org/10.1016/j.fuproc.2014.08.012
  • [6] McHugh J. (2003) Albert Kingsbury - His Life and Times. Sound & Vibration. Machinery Reliability. October 2003
  • [7] Burwell A.W., Camelford J.A. (1937) Oiliness in relation to viscosity. The Institution of Mechanical Engineers. Proceedings of the General Discussion on Lubrication & Lubricants. 1 3th-1 5th October 1937, Vol. 2, pp 261-273
  • [8] Wilson R., Barnard D. (1922) The measurement of the property of oiliness. SAE Technical Paper 220009, https://doi.org/10.4271/220009
  • [9] Marczak R. (1977) Tribological properties of bearing materials. Thesis presented to qualify as assistant professor. Informator WITPIS, 21/77 (in Polish)
  • [10] Kyropoulos S. (1937) The problem of “oiliness”. The Institution of Mechanical Engineers. Proceedings of the General Discussion on Lubrication & Lubricants. 1 3th-1 5th October 1937, Vol. 2, London, pp 346-353
  • [11] Worldwide Fuel Charter - Gasoline and diesel fuel. Sixth edition, 28 October 2019
  • [12] Rickard G., Brook P. (2014) Aviation turbine fuel lubricity - a review. CRC Report AV-14-11
  • [13] Goodger E., Vere R. (1985) Aviation Fuels Technology.Macmillan Publishers LTD, London, ISBN: 9780333357873
  • [14] Aird R.T., Forgham S.L. (1971) The lubricating quality of aviation fuels. Wear. Vol. 18, pp 361-380, https://doi.org/10.1016/0043-1648(71)90001-9
  • [15] Grabel L. (1977) Lubricity properties of high temperature jet fuel. NAPC Report No. NAPTCPE-112, 40 pp, Aug 1977 transEngin 2022, Volume 4 Issue 1 57
  • [16] Vere R.A. (1969) Lubricity of aviation turbine fuels. SAE Technical Paper 690667, https://doi.org/10.4271/690667
  • [17] Martel C.R., Petrarca J., Bradley R.P., McCoy J.R. (1974) Aircraft turbine engine fuel corrosion inhibitors and their effects on fuel properties. AF Aero Propulsion, Laboratory Report, AFAPLTR-20
  • [18] Biddle T.B., Edwards W.H. (1988) Evaluation of corrosion inhibitors as lubricity improvers. AFWAL-TR-88-2036 Report
  • [19] Appeldoorn J.K., et al. (1966) Lubricity of jet fuels. Lubricity properties of high-temperature jet fuels. ESSO Research and Engineering Company. Technicalreport AFAPL-TR-66-89, part I
  • [20] Appeldoorn J.K., Tao F.F. (1967) Lubricity of jet fuels. Lubricity properties of high-temperature jet fuels. ESSO Research and Engineering Company, Technical report AFAPL-TR-66-89, part II
  • [21] Appeldoorn J.K., Dukek W. (1966) Lubricity of jet fuels. SAE Technical Paper 660712, https://doi.org/10.4271/660712
  • [22] Appeldoorn J.K., Goldman I.B., Tao F.F. (1968) Lubricity of jet fuels. Lubricity properties of high-temperature jet fuels. ESSO Research and Engineering Company. Quarterly report No. 11 (15.11.1967 – 15.02.1968) for Air Force Aero Propulsion Laboratory
  • [23] Appeldoorn J.K., Tao F.F. (1968) The lubricity characteristics of heavy aromatics. Wear. Vol. 12, pp 117-130, https://doi.org/10.1016/0043-1648(68)90339-6
  • [24] Appeldoorn J.K., Goldman J.B., Tao F.F. (1969) Corrosive wear by atmospheric oxygen and moisture. ASLE Transactions. 12(2), pp 140-150, https://doi.org/10.1080/05698196908972256
  • [25] Tao F.F., Appeldoorn J.K. (1968) The ball-on cylinder test for evaluating jet fuel lubricity. ASLE Transactions. Vol. 11, pp 345-352, https://doi.org/10.1080/05698196808972239
  • [26] Furey M.J. (1961) Metallic contact and friction between sliding surfaces. ASLE Transactions. 4(1), pp 1-11, https://doi.org/10.1080/05698196108972414
  • [27] Aviation fuel lubricity evaluation (1988). CRC ReportNo. 560, Project No. CA-45-58
  • [28] Dukek W. (1988) Ball-on-Cylinder testing for aviation fuel lubricity. SAE Technical Paper 881537, https://doi.org/10.4271/881537
  • [29] Delaney C.L. (1985) Test and evaluation of shale derived jet fuel by the United States Air Force. ASME Beijing International Gas Turbine Symposium and Exposition
  • [30] ASTM D 5001. Standard test method for measurement of lubricity of aviation turbine fuels by the Ball-on-Cylinder Evaluator (BOCLE), https://doi.org/10.1520/D5001-90AR95E01
  • [31] Hadley J.W., Blackhurst P. (1991) An appraisal of the ball-on-cylinder technique for measuring aviation turbine fuel lubricity. Lubrication Engineering. 47(5), pp 404-411
  • [32] Quinn T.F.J. (1991) Physical Analysis for Tribology. Cambridge University Press. Online ISBN 9780511529634
  • [33] Hadley J.W. (1985) A method for the evaluation of the boundary lubricating properties of aviation turbine fuels. Wear. 101(3), pp 219-253, https://doi.org/10.1016/0043-1648(85)90079-1
  • [34] Tucker R.F., Stradling R.J., Wolveridge P.E., Rivers K.J., Ubbens A. (1994) The lubricity of deeply hydrogenated diesel fuels -the Swedish experience. SAE Technical Paper 942016, https://doi.org/10.4271/942016
  • [35] Lacey P.I., Lestz S.J. (1991) Fuel lubricity requirements for diesel injection systems. SWRI Report No. BFLRF 270, Southwest Research Institute, Sat, Antonio, X
  • [36] Lacey P.I. (1992) The relationship between fuel lubricity and diesel injection system wear. Interim Report BFLRF No. 275, Belvoir Fuels and Lubricants Research Facility, Southwest Research Institute, San Antonio, TX
  • [37] Lacey P.I., Lestz S.J. (1992) Effect of low-lubricity fuels on diesel injection pumps - Part I: Field performance. SAE Technical Paper 920823, https://doi.org/10.4271/920823
  • [38] Lacey P, Lestz S. (1992) Effect of low-lubricity fuels on diesel injection pumps -Part II: Laboratory Evaluation. SAE Technical Paper 920824, https://doi.org/10.4271/920824
  • [39] Nikanjam M., Henderson P.T. (1993) Lubricity of low sulfur diesel fuels. SAE Technical Paper 932740, https://doi.org/10.4271/932740
  • [40] Kanakia M.D., Cuellar Jr J.P., Lestz S.J. (1989) Development of fuel wear tests using the Cameron-Plint high-frequency reciprocating machine. Interim Report BFLRF No. 262, Belvoir Fuels and Lubricants Research Facility, Southwest Research Institute, San Antonio, TX
  • [41] LaceyP.I. (1994) Development of a lubricity test based on the transition from boundary lubrication to severe adhesive wear in fuels. Lubrication Engineering. 50(10), pp 749-757
  • [42] Lacey P.I., Westbrook S.R. (1995) Diesel fuel lubricity. SAE Transactions. Vol. 104, pp 214-225, http://www.jstor.org/stable/44615078 Fuel lubricity and its laboratory evaluation 58
  • [43] ASTM D6078. Standard Test Method for Evaluating Lubricity of Diesel Fuels by the Scuffing Load Ball-on-Cylinder Lubricity Evaluator (SLBOCLE), https://doi.org/10.1520/D6078-99
  • [44] Jenkins S., Landells R., Hadley J. (1993) Diesel fuel lubricity development of a Constant Load Scuffing Test using the Ball on Cylinder Lubricity Evaluator (BOCLE). SAE Technical Paper932691, https://doi.org/10.4271/932691
  • [45] Cooper D. (1995) Laboratory screening tests for low sulphur diesel fuel lubricity. Lubrication Science. 7(2), pp 133-148
  • [46] Saikkonen P., Mikkonen S., Makela M., Neimi A. (1996) Lubricity of reformulated diesel fuel – experience in Finland. SAE Technical Paper961948, https://doi.org/10.4271/961948
  • [47] Joutsimo M. (1997) The reformulated fuels in Nordic countries. Presentation at the 1997 European Oil Refining Conference and Exhibition. Lisbon, Portugal
  • [48] Caprotti R., Bovington C., Fowler Jr. W., Taylor M. (1992) Additive technology as a way to improve diesel fuel quality. SAE Paper 922183, https://doi.org/10.4271/922183
  • [49] Mitchell K. (1995) The lubricity of winter diesel fuels. SAE Technical Paper 952370, https://doi.org/10.4271/952370
  • [50] Mitchell K. (1996) The Lubricity of winter diesel fuels -Part 2: Pump rig test results. SAE Technical Paper 961180, https://doi.org/10.4271/961180
  • [51] Mitchell K. (1996) The Lubricity of winter diesel fuels -Part 3: Further pump rig tests. SAE Technical Paper 961944, https://doi.org/10.4271/961944
  • [52] Wei D.P., Spikes H.A. (1986) The lubricity of diesel fuels. Wear. 111(2), pp 217-235, https://doi.org/10.1016/0043-1648(86)90221-8
  • [53] Mills T.N. (1979) Boundary lubricated contacts at high repetition rates. Ph.D Thesis, University of London
  • [54] Bovington C., Caprotti R., Meyer K., Spikes H.A. (1995) Development of a laboratory test to predict lubricity properties of diesel fuels and its application to the development of highly refined fuels. Tribotest. 2(2), pp 93-112, https://doi.org/10.1002/tt.3020020202
  • [55] Voitik R., Ren N. (1995) Diesel fuel lubricity by standard four ball apparatus utilizing Ball on Three Disks, BOTD. SAE Technical Paper950247, https://doi.org/10.4271/950247
  • [56] Voitik R. (1993) Four-ball machine with new B.O.T.S. test permits diesel fuel lubricity evaluation. ISO/TC22/SC7/WG6 Committee, Document N127
  • [57] McKay B., Villahermosa L., Kline K., Muzzell P., Stavinoha L. (2005) Bench-top lubricity evaluator correlation with military rotary fuel injection pump test rig. SAE Technical Paper 2005-01-3899, https://doi.org/10.4271/2005-01-3899
  • [58] Sukjit E., Dearn K. D., Tsolakis A. (2012) Interrogating the surface. The effect of blended diesel fuels on lubricity. SAE Int. Journal of Fuels and Lubricants. 5(1), pp 154-162, https://doi.org/10.4271/2011-01-1940
  • [59] Muñoz M., Moreno F., Monné C., Morea J., Terradillos J. (2011) Bio-diesel improves lubricity of new low sulphur diesel fuels. Renewable Energy. 36(11), pp 2918-2924, https://doi.org/10.1016/j.renene.2011.04.007
  • [60] Galbraith R., Hertz P.B. (1997) The ROCLE test for diesel and bio-diesel fuel lubricity. SAE Technical Paper 972862, https://doi.org/10.4271/972862
  • [61] Munson J.W., Hetrz P.B., Dalai A.K., Reaney M.J. (1999) Lubricity survey of low-level biodiesel fuel additives using the „Munson ROCLE” bench test. SAE Paper 1999-01-3590, https://doi.org/10.4271/1999-01-3590
  • [62] Hertz P.B. (1999) Extending diesel engine life and fuel economy with canola based fuel additives. University of Saskatchewan, Mechanical Engineering Department, Saskatchewan, Canada
  • [63] Nikanjam M., Crosby T., Henderson P., Gray C., Meyer K., Davenport N. (1995) ISO diesel fuel lubricity round robin program. SAE Technical Paper 952372, https://doi.org/10.4271/952372
  • [64] ISO 12156. Diesel fuel - Assessment of lubricity using the high-frequency reciprocating rig (HFRR)
  • [65] CEC F-06-96. Measurement of Diesel Fuel Lubricity (HFRR Fuel Lubricity Tester)
  • [66] ASTM D6079-99, Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High Frequency Reciprocating Rig (HFRR), https://doi.org/10.1520/D6079-99
  • [67] ASTM D7688-11, Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High Frequency Reciprocating Rig (HFRR) by Visual Observation, https://doi.org/10.1520/D7688-11
  • [68] Lehto K., Vepsäläinen A., Kiiski U., Kuronen M. (2014) Diesel fuel lubricity comparisons with HFRR and Scuffing Load Ball-on-Cylinder Lubricity Evaluator Methods. SAE Int. J. Fuels Lubr. 7(3), pp 842-848, https://doi.org/10.4271/2014-01-276
  • [69] Kuronen M., Kiiski U., LehtoK. (2015) Diesel fuel lubricity comparisons with HFRR and scuffing Load Ball-on-Cylinder Lubricity Evaluator methods, part II. SAE Technical Paper 2015-24-2498, https://doi.org/10.4271/2015-24-2498
  • [70] Delgado J., Gadea M., Esarte C., Peláez A. (2020) HFRR and SL-BOCLE lubricity of paraffinic diesel fuels considering different origins and final formulations with biodiesels and additives. Energy & Fuels. 34(3), pp 2654-2664, https://doi.org/10.1021/acs.energyfuels.9b03169
  • [71] Hansen G. (2018) Military ground vehicle fuel lubricity tester (Improving the sensitivity of the HFRR). Interim report TFLRF, No. 489
  • [72] Ping W., Korcek S., Spikes H. (1996) Comparison of the lubricity of gasoline and diesel fuels. SAE Technical Paper 962010
  • [73] Wei D.P., Spikes H.A., Korcek S. (1999) The lubricity of gasoline. Tribology Transactions. 42(4), pp 813-823, https://doi.org/10.1080/10402009908982288
  • [74] Agudelo J., Delgado Á., Benjumea P. (2011) The lubricity of ethanol-gasoline fuel blends. Rev. Fac. Ing.Univ. Antioquia. Vol. 58, pp 9-16
  • [75] Lopreato L., de Oliveira E., Duarte M. (2012) Gasoline lubricity: An exploratory evaluation. SAE Technical Paper 2012-36-0502, https://doi.org/10.4271/2012-36-0502
  • [76] Arkoudeas P., Karonis D., Zannikos F., Lois E. (2014) Lubricity assessment of gasoline fuels. Fuel Processing Technology. Vol. 122, pp 107-119, https://doi.org/10.1016/j.fuproc.2014.01.008
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c2da931-b0e3-4867-8f38-d230bfc54c8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.