PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fracture interference and propagation geometry of hydraulic fractures based on XFEM in an unconventional oil reservoir

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unconventional oil and gas reservoirs are characterised by low porosity, low permeability and low natural deliverability. At present, horizontal wells staged fracturing is an effective development method. However, in the case of staged hydraulic fracturing in horizontal wells, stress interference occurs between multiple fractures, leading to fracture deformation and even inhibiting the formation of fractures, thereby affecting reservoir production. In this paper, based on the extended finite element method (XFEM), considering the fluid flow in the fracture and fracturing fluid filtration, we analyse the effects of fracturing fluid pumping rate, fracture spacing and elastic modulus on horizontal in-situ stress, fracture parameters and fracture extension pattern during different fracturing initiation processes. The results show that the induced stress generated by the action of fracturing fluid changes the direction of horizontal in-situ stress in the elliptical region around the fracture. In the mode of simultaneous fracture initiation (TFIS), the extension of two symmetrical fractures is “repulsive”; in the mode of two fractures initiated at different times (TFIDT), the extension direction is “mutual attraction”. A large pumping rate and small elastic modulus are conducive to fracture propagation. In the TFIS mode, two fractures alternately expand, while in the TFIDT mode, the impact of rock mechanical properties and construction parameters on fracture propagation will be amplified. The extension of subsequent fractures will be restrained, especially when the fracture spacing is less than 10 m. The width of the previously created fracture will be severely affected, even causing a partial closure and becoming elongated fractures.
Rocznik
Strony
301--318
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing, China
  • State Energy Center for Shale Oil Research and Development, Beijing, China
  • Department of Petroleum Engineering, Northeast Petroleum University, Daqing, China
autor
  • State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing, China
  • State Energy Center for Shale Oil Research and Development, Beijing, China
autor
  • PipeChina Oil & Gas Pipeline Control Center, Beijing, 122000, China
autor
  • Department of Petroleum Engineering, Northeast Petroleum University, Daqing, China
autor
  • State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing, China
  • State Energy Center for Shale Oil Research and Development, Beijing, China
autor
  • State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing, China
  • State Energy Center for Shale Oil Research and Development, Beijing, China
autor
  • The Eighth Oil Production Plant of Daqing Oilfield Limited Company, Daqing, China
  • The Fourth Oil Production Plant of Daqing Oilfield Limited Company, Daqing, China
autor
  • The Tenth Oil Production Plant of Daqing Oilfield Limited Company, Daqing, China
Bibliografia
  • [1] B.X. Huang, X.L. Zhao, J. Ma, T.Y.A. Sun, Field experiment of destress hydraulic fracturing for controlling the large deformation of the dynamic pressure entry heading adjacent to the advancing longwall face. Arch. Min. Sci. 64 (4), 829-848 (2019). DOI: https://doi.org/10.24425/ams.2019.131069.
  • [2] B.W. Xia, L. Liu, Z.Y. Peng, Y.G. Gao, Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone. Chin. J. Geotech. Eng. 42 (8), 1549-1556 (2020). DOI: https://doi.org/10.11779/CJGE202008021.
  • [3] D. Rossana, M. Rinaldi, T. Marco, T. Francesco, Theoretical and computational investigation of the fracturing behavior of anisotropic geomaterials. (2022). DOI: https://doi.org/10.1007/s00161-022-01141-4.
  • [4] D.J. Youn, D.V. Griffiths, Stochastic analysis of hydraulic fracture propagation using the extended finite element method and random field theory. ISRM Regional Symposium – 8th South American Congress on Rock Mechanics. Buenos Aires, Argentina, 15-18 November, ISRM-SCRM-2015-029 (2015).
  • [5] F.T. Wang, D.L. Shao, C. Zhang, C.K. Zhang, Z.Y. Song, Overlying sand-inrushing mechanism and associated control technology for longwall mining in shallow buried coal seams with the soft surrounding rock. Arch. Min. Sci. 67 (4), 681-697 (2022). DOI: https://doi.org/10.24425/ams.2022.143681.
  • [6] J. Sepehri, M.Y. Soliman, S.M. Morse, Application of extended finite element method to simulate hydraulic fracture propagation from oriented perforations. SPE Hydraul. Fract. Technol. Conf. Texas, USA, 3-5 February, SPE-173342 (2015).
  • [7] J.J. Sheng, Evaluation of EOR potential of energized fluid fracturing – From an energy perspective. Fuel 307, 121856 (2022). DOI: https://doi.org/10.1016/j.fuel.2021.121856.
  • [8] K. Wu, J.E. Olson, Mechanisms of Simultaneous Hydraulic-Fracture Propagation From Multiple Perforation Clusters in Horizontal Wells. SPE Journal 21 (3), 1000-1008 (2016). DOI: https://doi.org/10.2118/178925-PA.
  • [9] M. Haddad, K. Sepehrnoori, XFEM-Based CZM for the simulation of 3D multiple-stage hydraulic fracturing in quasi-brittle shale formations. Rock Mech. 49, 4731-4748 (2015). DOI: https://doi.org/10.1007/s00603-016-1057-2.
  • [10] M. Wang, Z.Q. Guo, C.X. Jiao, S.F. Lu, J.B. Li, H.T. Xue, J.J. Li, J.Q. Li, G.H. Chen, Exploration progress and geochemical features of lacustrine shale oils in China. J. Petrol. Sci. Eng. 178, 975-986 (2019). DOI: https://doi.org/10.1016/j.petrol.2019.04.029.
  • [11] M.L. Benzeggagh, M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56 (4), 439-449 (1996). DOI: https://doi.org/10.1016/0266-3538(96)00005-x.
  • [12] Q. Lei, Y. Xu, B. Cai, B.S. Guan, X. Wang, G.Q. Bi, H. Li, S. Li, B. Ding, H.F. Fu, Z. Tong, T. Li, H.Y. Zhang, Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs. Petrol. Explor. Dev. 49 (1), 191-199 (2022). DOI: https://doi.org/10.1016/S1876-3804(22)60015-6.
  • [13] Q. Wang, Y. Hu, J. Zhao, L. Ren, A numerical model to simulate fracture network induced by hydraulic fracturing for 3D shale gas reservoir with geo-stress interference. J. Eng. Res-Kuwait. 8 (2), 45-65 (2019).
  • [14] Q.D. Zeng, J. Yao, Numerical simulation of shale hydraulic fracturing based on the extended finite element method. Appl. Math. Mech. 35 (11), 1239-1248 (2014). DOI: https://doi.org/10.3879/j.issn.10000887.2014.11.007.
  • [15] R. Dimitri, M. Rinaldi, T. Marco, F. Tornabene, F. Corrado, FEM/XFEM modeling of the 3D fracturing process in transversely isotropic geomaterials. Compos. Struct. 276, 114502 (2021). DOI: https://doi.org/10.1016/j.compstruct.2021.114502.
  • [16] S. Kumar, F. Zhou, K.H. Searles, S.V. Gosavi, Modeling of fluid-driven fractures using XFEM.51st U.S. Rock Mechanics/Geomechanics Symposium. San Francisco, California, USA, 25-28, June, ARMA-2017-0911 (2017).
  • [17] S. Sun, S. Liang, Y.K. Liu, D. Liu, M.Y. Gao, Y. Tian, J.K. Wang, A Review on Shale Oil and Gas Characteristics and Molecular Dynamics Simulation for the Fluid Behavior in Shale Pore. J. Mol. Liq. 376, 121507 (2023). DOI: https://doi.org/10.1016/j.molliq.2023.121507.
  • [18] T. Zhou, H.B. Wang, F.X. Li, Y.Z. Li, Y.S. Zou, C. Zhang, Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs. Adv. Pet. Explor. Dev. 47 (5), 1039-1051 (2020). DOI: https://doi.org/10.11698/PED.2020.05.18.
  • [19] T. Zhou, M. Chen, S.C. Zhang, Y.Z. Li, F.X. Li, C. Zhang, Simulation of fracture propagation and optimization of ball-sealer in-stage diversion under the effect of heterogeneous stress field. Nat. Gas Ind. 40 (03), 82-91 (2020). DOI: https://doi.org/10.1016/j.ngib.2020.09.010.
  • [20] T.K. Guo, S.C. Zhang, Y.S. Zou, Numerical simulation of hydraulic fracture propagation in shale gas reservoir. J. Nat. Gas. Sci. Eng. 26, 847-856 (2015). DOI: https://doi.org/10.1016/j.jngse.2015.07.024.
  • [21] W. Tian, P.C. Li, Y. Dong, Z.W Lu, D.T. Lu, Numerical simulation of sequential, alternate and modified zipper hydraulic fracturing in horizontal wells using XFEM. J. Petrol. Sci. Eng. 183, 106251 (2019). DOI: https://doi.org/10.1016/j.petrol.2019.106251.
  • [22] W.H. Wang, K. Wu, J. Olson, Characterization of hydraulic fracture geometry in shale rocks through physical modeling. Int. J. Fracture 216 (1), 71-85 (2019). DOI: https://doi.org/10.1007/s10704-019-00343-3.
  • [23] X.L. Wang, F. Shi, H. Liu, H.A. Wu, Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method. J. Nat. Gas. sci. Eng. 33, 56-69 (2016). DOI: https://doi.org/10.1016/j.jngse.2016.05.001.
  • [24] X.S. Shang, Y.H. Ding, L.F. Yang, Y.J. Lu, X.M. Yan, Y.H. Wang, Network fracturing technique in shale reservoirs based on weak discontinuity and fracture interaction. Nat. Gas Geosci. 27 (10), 1883-1891 (2016). DOI: https://doi.org/10.11764/j.issn.1672-1926.2016.10.188.
  • [25] Y.K. Zhang, S.B. Chen, X.Y. Li, H.J. Wang, Hydraulic fracturing simulation technology of shale gas reservoir and application of extended finite element method. Nat. Gas Geosci. 32 (1), 109-118 (2021). DOI: https://doi.org/10.11764/j.issn.1672-1926.2020.11.006.
  • [26] Y.M. Song, H. Ren, H.L. Xu, D. An, Experimental study on deformation and damage evolution of a mining roadway with weak layer rock under compression-shear load. Arch. Min. Sci. 66 (3), 351-368 (2022). DOI: https://doi.org/10.24425/ams.2021.138593.
  • [27] Z.R.Chen, Implementation of the extended finite element method for hydraulic fracture problems. 13th International Conference on Fracture, Beijing, China, 16-21 June, 725-739 (2013).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c27bba6-2456-4ecc-a469-d071e95945f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.