Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A six-node triangular element is presented in this paper for structural analysis. With this approach, the approximation functions of the interpolation strategy are given by using the double interpolation procedure, which includes nodal values as well as averaged nodal gradients. The numerical results are, therefore, achieved following the proposed element. The efficiency of this element and its comparison is described by some fundamental examples. Better numerical solutions and smoother distributions of stresses not achieved by the standard elements will be provided when using this element. The computational time is also presented to overview the pros and cons of the proposed element. In fact, the new element’s computational time is higher than that based on the standard element because of the double interpolation procedure, but one does not need post-processing of any smoothing operation.
Czasopismo
Rocznik
Tom
Strony
221--238
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
- Department of Civil Engineering, Ho Chi Minh City University of Architecture Ho Chi Minh, Vietnam
Bibliografia
- 1. Kumar S., Singh I.V., Mishra B.K., XFEM simulation of stable crack growth using J–R curve under finite strain plasticity, International Journal of Mechanics and Materials in Design, 10(2): 165–177, 2014, doi: 10.1007/s10999-014-9238-1.
- 2. Prashant Singh A., Tailor A., Tumrate C. S., Mishra D., Crack growth simulation in a functionally graded material plate with uniformly distributed pores using extended finite element method, Materials Today: Proceedings, 60(1): 602–607, 2022, doi: 10.1016/j.matpr.2022.02.123.
- 3. Bui Tinh Q., Nguyen Minh N., A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates, Structural Engineering and Mechanics, 39(4): 579–598, 2011.
- 4. Ton-That H.L., Nguyen-Van A., A combined strain element in static, frequency and buckling analyses of laminated composite plates and shells, Periodica Polytechnica Civil Engineering, 65(1): 56–71, 2021, doi: 10.3311/PPci.16809.
- 5. Ton-That H.L., A combined strain element to functionally graded structures in thermal environment, Acta Polytechnica, 60(6): 528–539, 2020, doi: 10.14311/AP.2020.60.0528.
- 6. Ton-That H.L., Nguyen-Van H., Chau-Dinh T., Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element SQ4C, Comptes Rendus M´ecanique, 348(4): 285–305, 2020, doi: 10.5802/crmeca.7.
- 7. Lai W. et al., 3-D elasto-plastic large deformations: IGA simulation by B´ezier extraction of NURBS, Advances in Engineering Software, 108: 68–82, 2017, doi: 10.1016/ j.advengsoft.2017.02.011.
- 8. Patil R.U., Mishra B.R., Singh I.V., Bui T.Q., A new multiscale phase field method to simulate failure in composites, Advances in Engineering Software, 126: 9–33, 2018, doi: 10.1016/j.advengsoft.2018.08.010.
- 9. Nguyen M.N., Bui T.Q., Yu T., Hirose S., Isogeometric analysis for unsaturated flow problems, Computers and Geotechnics, 62: 257–267, 2014, doi: 10.1016/j.compgeo. 2014.08.003.
- 10. Kim M.-G, Lee G.-H., Lee H., Koo B., Isogeometric analysis for geometrically exact shell elements using B´ezier extraction of NURBS with assumed natural strain method, Thin-Walled Structures, 172: 108846, 2022, doi: 10.1016/j.tws.2021.108846.
- 11. Hu H., Batou A., Ouyang H., An Isogeometric analysis based method for frictional elastic contact problems with randomly rough surfaces, Computer Methods in Applied Mechanics and Engineering, 394: 114865, 2022, doi: 10.1016/j.cma.2022.114865.
- 12. Ton-That H.L., The linear and nonlinear bending analyses of functionally graded carbon nanotube-reinforced composite plates based on the novel four-node quadrilateral element, European Journal of Computational Mechanics, 29(1): 139–172, 2020, doi: 10.13052/ ejcm2642-2085.2915.
- 13. Dang-Trung H., Yang D.-J., Liu Y.C., Improvements in shear locking and spurious zero energy modes using Chebyshev finite element method, Journal of Computing and Information Science in Engineering, 19(1): 011006, 2018, doi: 10.1115/1.4041829.
- 14. Liu T., Wang Q., Qin B., Wang A., Free in-plane vibration of plates with arbitrary curvilinear geometry: Spectral-Chebyshev model and experimental study, Thin-Walled Structures, 170: 108628, 2022, doi: 10.1016/j.tws.2021.108628.
- 15. Ton-That H.L., Nguyen-Van H., Chau-Dinh T., A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets, Archive of Applied Mechanics, 91(6): 2435–2466, 2021, doi: 10.1007/s00419-021-01893-6.
- 16. Zheng C. et al., A novel twice-interpolation finite element method for solid mechanics problems, Acta Mechanica Sinica, 26(2): 265–278, 2010, doi: 10.1007/s10409-009-0265-3.
- 17. Wu S.C., Zhang W.H., Peng X., Miao B.R., A twice-interpolation finite element method (TFEM) for crack propagation problems, International Journal of Computational Methods, 09(04): 1250055, 2012, doi: 10.1142/S0219876212500557.
- 18. Timoshenko S.P., Goodier J., Theory of Elasticity, 3rd. ed., New York: McGraw-Hill, 1970.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c215b06-dfa7-460e-893e-cccc54ed88f7