PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristic of regional groundwater flow system: case modeling study in Longzici karst spring area, North China

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Karst spring water dynamic characteristics and its response to atmospheric precipitation are of great significance for water resources utilization under the background of climate change. This paper selects Longzici spring area, North China, as the study area. Based on a long series of spring water flow and precipitation data, the dynamic characteristics of spring flow were analyzed and the numerical simulation of the groundwater flow model was established. The results show that the groundwater kept the sustained decline over the past decades which is in a negative equilibrium state, with a storage variable of - 2.26 million m3/year. The sensitivity of spring flow to precipitation under different precipitation scenarios shows that the water level changes in the recharge and drainage areas are similar about (3-5 cm) and slightly larger than that in the runoff area(1.5 cm) when minimum rainfall (287.24 mm) happens. When the precipitation is at its maximum (867.66 mm), the water level change in the runoff area can reach 95 cm which is much larger than those in the recharge and discharge areas. The results indicate that Longzici karst spring has a relatively good regulation water resource capacity and the runoff area is more sensitive which plays an important role in response to climate change.
Czasopismo
Rocznik
Strony
323--339
Opis fizyczny
Bibliogr. 48 poz.
Twórcy
  • School of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
  • Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing, China
autor
  • School of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
autor
  • School of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
  • Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing, China
Bibliografia
  • 1. Adji TN, Bahtiar IY (2016) Rainfall-discharge relationship and karst flow components analysis for karst aquifer characterization in Petoyan Spring, Java, Indonesia. Environ Earth Sci 75(9):735. https://doi.org/10.1007/s12665-016-5553-1
  • 2. Agarwal A, Bhatnaga NK, Nema RK, Agrawal NK (2012) Rainfall dependence of springs in the midwestern himalayan hills of Uttarakhand. Mt Res Dev 32(4):446-455. https://doi.org/10.1659/ MRD-JOURNAL-D-12-00054.1
  • 3. An LX, Hao YH, Jim Yeh TC, Liu Y, Liu WQ, Zhang BJ (2020) Simulation of karst spring discharge using a combination of time-frequency analysis methods and long short-term memory neural networks. J Hydrol 589(1):125320. https://doi.org/10.1016/j.jhydrol. 2020.125320
  • 4. Bithin D, Claire P, Marine P, Prakash Om (2017) Linking a simulated annealing based optimization model with PHT3D simulation model for chemically reactive transport processes to optimally characterize unknown contaminant sources in a former mine site in Australia. J Water Resour Prot 9(5):432-454. https://doi.org/ 10.4236/jwarp.2017.95028
  • 5. Cao DT (2008) Numerical simulation of water resource to karstic water source field in Tangcun—Xilong River Area, Zoucheng City. Geol
  • 6. Rev 02:278-288. (in Chinese) https://doi.org/10.3321/j.issn:0371-5736.2008.02.016
  • 7. Cheng S, Qiao XJ, Shi YL, Wang DW (2021) Machine learning for predicting discharge fuctuation of a karst spring in North China. Acta Geophys 69:257-270. https://doi.org/10.1007/ s11600-020-00522-0
  • 8. De Rooij R, Perrochet P, Graham W (2013) From rainfall to spring discharge: coupling conduit flow, subsurface matrix flow and surface flow in karst systems using a discrete-continuum model. Adv Water Resour 61:29-41. https://doi.org/10.1016/j.advwatres. 2013.08.009
  • 9. Fiorillo F, Doglioni A (2010) The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeol J 18(8):1881-1895. https://doi.org/ 10.1007/s10040-010-0666-1
  • 10. Gao Y, Bian JM, Song C, Cong L (2016) Response of mineral water resources to precipitation change based on wavelet analysis in Fusong County. J China Hydrol 36(02):35-40. https://doi.org/10. 3969/j.issn.1000-0852.2016.02.007
  • 11. Gui H, Xu JP (2016) A numerical simulation of impact of groundwater seepage on temperature distribution in karst collapse pillar. Arab J Geosci 1(10):10. https://doi.org/10.1007/s12517-016-2806-y
  • 12. Han XR, Lu RA, Li QS (1993) The karst water system- study on karst spring in Shanxi. Geological Publishing House, Beijing, pp 1-340
  • 13. Hao YH, Wang W, Wang GQ, Du X, Zhu YE, Wang XM (2009) Effects of climate change and human activities on the Karstic Springs in Northern China: a case study of the Liulin Springs. Acta Geol Sin 83(1):138-144. https://doi.org/10.3321/j.issn:0001-5717. 2009.01.014
  • 14. Hao YH, Wu J, Sun QX, Zhu Y, Liu Y, Li ZT, Jim Yeh TC (2013) Simulating effect of anthropogenic activities and climate variation on Liulin Springs discharge depletion by using the ARIMAX model. Hydrol Process 27(18):2605-2613. https://doi.org/ 10.1002/hyp.9381
  • 15. Hao YH, Zhang J, Wang JJ, Li RF, Hao PM, Zhan HB (2016) How does the anthropogenic activity affect the spring discharge? J Hydrol 540:1053-1065. https://doi.org/10.1016/j.jhydrol.2016. 07.024
  • 16. IPCC, (2021) Summary for policymakers In: climate change 2021: the physical science basis contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte V, P Zhai, A Pirani, SL Connors, C Péan, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Leitzell, E Lonnoy, JB R Matthews, TK Maycock, T Waterfield, O Yelekęi, R Yu and B Zhou (eds )] Cambridge University Press In Press
  • 17. Jiao YJ, Pan XD, Zeng J, Ren K (2017) Numerical modeling of the influence of karst-conduit structure on variation of spring flow. Carsologica Sin 36(05):736-742. https://doi.org/10.1193/karst 2017y48
  • 18. Jin SB (2019) Analysis on the influence of the temporal and spatial distribution of precipitation in the upper yellow river on the Long-yangxia reservoir flow. Gansu Water Resour Hydropower Technol 55(03):5-7. https://doi.org/10.1964/j.issn2095-0144.2019.03.002
  • 19. Labat D, Ababou R, Mangin A (2000) Rainfall-runoff relations for karstic springs Part I: convolution and spectral analyses. J Hydrol 238(3):123-148. https://doi.org/10.1016/S0022-1694(00)00321-8
  • 20. Labat D, Mangin A, Ababou R (2002) Rainfall-runoff relations for karstic springs: multifractal analyses. J Hydrol 256(3):176-195. https://doi.org/10.1016/S0022-1694(01)00535-2
  • 21. Li GM, Tsang C-F (2003) Numerical modeling of seepage into underground openings in a heterogeneous continuum: a sensitivity study of media parameters. Earth Sci J China Univ Geosci 28(5):497-504. https://doi.org/10.3321/j.issn:1000-2383.2003.05.005
  • 22. Li CC, Gao XB, Wang WZ, Zhang X, Zhang XB, Jiang CF, Wang YX (2020) Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system: a case study at Jinci, northern China. J Hydrol 596(1):125691. https://doi.org/10. 1016/j.jhydrol.2020.125691
  • 23. Liang YP, Wang WT (2010) The division and characteristics of karst water systems in northern China. Acta Geoscientia Sinica 21(6):860-868
  • 24. Liang YP, Tang CL, Shen HY, et al. (2015) Investigation on the cause of karst water environmental problems in Longzici spring area and research report on spring water supplement measures Guilin Institute of Karst Geology, Chinese Academy of Geological Sciences
  • 25. Liang YP, Zhang FW, Shen HY, Tang CL, Zhao CH, Wang ZH, Hou HB, Ren JH, Guo FF (2019) Recognition of the critical hydrogeological conditions of the Jinci Spring and Lancun Spring in Shanxi. Hydrogeol Eng Geol. 9(11-18):34. https://doi.org/10. 1603/j.cnki.issn.1000-3665.2019.01.02
  • 26. Liu X, Zhao N, Guo JY, Guo B (2020) Prediction of monthly precipitation over the Tibetan Plateau based on LSTM neural network. J Geo-Inf Sci 22(8):1617-1629. https://doi.org/10.1208/dqxxkx. 2020.190378
  • 27. Mahdi S, Asghar A, Bithin D (2021) Optimizing monthly ecological flow regime by a coupled fuzzy physical habitat simulation-genetic algorithm method. Environ Syst Decis 41:425-436. https://doi.org/10.1007/s10669-021-09809-z
  • 28. Nistor M-M (2019) Climate change effect on groundwater resources in South East Europe during 21st century. Quat Int 504:171-180. https://doi.org/10.1016/j.quaint.2018.05.019
  • 29. Meng QH, Xing LT, Liu L, Xing XR, Zhao ZH, Zhang FJ, Li CL (2021) Time-lag characteristics of the response of karst springs to precipitation in the northern China. Environ Earth Sci 80(9):1-13. https://doi.org/10.1007/s12665-021-09640-4
  • 30. Nan YH, Guo GX, Xu L, Shen YY, Lu HY, Chen YH (2019) Response characteristic analysis of Ganchi Spring discharge to rainfall on the basis of multiple linear regression. Urban Geol 14(02):31-35. https://doi.org/10.3969/j.issn.1007-1903.2019.02.006
  • 31. Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168(1):73-89. https://doi.org/10.1016/0022-1694(94)02648-U
  • 32. Pandzic K, Cesarec K, Grgic B (1997) An analysis of the relationship between precipitation and discharge fields over a karstic river basin. Int J Climatol 17(8):891-901. https://doi.org/10. 1002/(SICI)1097-0088(19970630)17:8<891::AID-JOC151>3. 0.CO;2-W
  • 33. Qin Y (2019) Research on dynamic evaluation model of groundwater resources based on remote sensing big data and machine learning methods. Zhejiang University
  • 34. Qiu JZ (2019) Study on effects of monsoons on precipitation and spring discharge in Niangziguan Spring. J Harbin Univ Commer (nat Sci Ed) 35(02):157-166. https://doi.org/10.3969/j.issn.1672-0946. 2019.02.009
  • 35. Robertson WM, Allen JT, Wolaver BD, Sharp JM (2019) Aridland spring response to mesoscale precipitation: implications for groundwater-dependent ecosystem sustainability. J Hydrol 570:850-862. https://doi.org/10.1016/j.jhydrol.2018.12.074
  • 36. Romano E, Del Bon A, Petrangeli AB, Preziosi E (2013) Generating synthetic time series of springs discharge in relation to standardized precipitation indices. case study in Central Italy. J Hydrol 507:86-99. https://doi.org/10.1016/j.jhydrol.2013.10.020
  • 37. Sappa G, De Filippi FM, Iacurto S, Grelle G (2019) Evaluation of minimum Karst Spring discharge using a simple rainfall-input model: the case study of Capodacqua di Spigno Spring (Central Italy). Water 11(4):807. https://doi.org/10.3390/w11040807
  • 38. Seo SB, Das Bhowmik R, Sankarasubramanian A, Mahinthakumar G, Kumar M (2019) The role of cross-correlation between precipitation and temperature in basin-scale simulations of hydrologic variables. J Hydrol 570:304-314. https://doi.org/10.1016/j.jhydr ol.2018.12.076
  • 39. Shaver G (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50(10):871-882. https:// doi.org/10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2
  • 40. Shu LC, Fan JH, Lu CP, Zhang CY, Tang R (2015) Hydrogeological simulation test of fissure-conduit media in springs watershed. J Jilin Univ: Earth Sci Ed 45(3):908-917. https://doi.org/10.1327/j. cnki.jjuese.201503206
  • 41. Tang CL, Liang YP, Wang WT, Zhao CH, Shen HY (2017) Hydrogeochemical and isotopic characteristics of the karst groundwater systems in Longzici spring basin. J Guilin Univ Technol 37(01):53-58. https://doi.org/10.3969/j.issn.1674-9057.2017.01.007
  • 42. Wang YX, Gao XB (2009) Geochemical evolution of the Niangziguan karst water system under the impact of human activities. Car-sologica Sinica. 2:103-112. https://doi.org/10.3969/j.issn.1001-4810.2009.02.004
  • 43. Wang Z (2013) Numerical simulation of the Karst groundwater system evolution. Geol Sci Technol Inf 31(04):201-206
  • 44. Wang ZZ, Zhi BF, Liu H, Yao P (2009) Numerical simulation of the Karst water in Jiangcun water source field Guangzhou. J Geol Hazards Environ Preserv 20(04):44-47. https://doi.org/10.3969/j. issn.1006-4362.2009.04.008
  • 45. Wang DW, Qiao XJ, Gao B, Jia XJ (2021) Dynamic characteristics and influence factors of discharge of the Longzici karst spring in Shanxi Province. Carsologica Sinica 40(3):420-429. https://doi. org/10.11932/karst2021y27
  • 46. Wei XY, Zhang BX, Li WL, Liu DM, Zhang JS (2015) Reserarch on the numerical simulation of Karst groundwater in Feicheng Basin. China Rural Water Hydropower 11:59-64. https://doi.org/ 10.3969/j.issn.1007-2284.2015.11.014
  • 47. Xu YX, Zhang ZX, Zhang YB, Liang YP, Cao JH, Jiang ZC (2017) Research advance in Karst Springs of Shanxi Province. J Taiyuan Univ Technol 14:413-426. https://doi.org/10.1635/j.cnki.issn1 007-9432tyut.2017.03.020
  • 48. Zhang RQ, Xu SZ, Wang HC, et al. (1988) Research report on the Karst water system of Longzi Temple and Guozhuang Spring in Shanxi Province Wuhan China University of Geosciences
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c1bc52f-7539-48d1-8b93-232c4cb2269d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.