PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of dose calculation accuracy within temporary breast tissue expanders with integrated/remote metallic ports

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To investigate the dose calculation accuracy of the Eclipse TPS in the presence of temporary breast tissue expanders with high-density metallic ports. Materials and Methods: Four anthropomorphic phantoms were prepared, with integrated Nagor (FIN) and Mentor metallic ports (FIM), remote Mentor port (FRM) and reference one without high-density materials (FR). For each phantom, 16-bit CTs were performed, and several treatment plans (3D, VMAT) were prepared in the Eclipse TPS. X6FF, X15FF and X6FFF and two dose calculation algorithms (AAA, AXB) were used. Two calibration curves (CalC) were used to calculate the dose: standard and extended (with higher material densities added). The calculation and film measurements were compared. Differences in the dose distributions obtained for both CalC were analyzed. Results: For FR, differences below 5% were obtained for 95% of all measurement points (mean −0.1 ± 2.5%), whereas for phantoms with ports, the differences were 90% (FIN), 91% (FIM) and 93% (FRM). For FIN and FIM only at one point close to the port (no. 3), a significantly greater difference was observed (9.2%). The beam energy and calculation algorithm do not seem to impact the results. When comparing calculations for standard and extended CalC, dose differences were more pronounced for the 3D technique than for the VMAT technique. Conclusions: The calculation algorithm and beam energy do not seem to impact the results when appropriate CT parameters and the extended CalC are implemented. A slightly higher dose is measured at the surface of the phantom, although this appears to also apply to points away from the ports. VMAT appears to be less sensitive to errors.
Rocznik
Strony
131--140
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Medical Physics, The Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, Warsaw, Poland
  • Department of Medical Physics, The Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, Warsaw, Poland
  • Department of Medical Physics, The Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5 Street, Warsaw, Poland
  • Particle Acceleration Physics and Technology Division, National Centre for Nuclear Research, A. Sołtana 7 Street, Otwock, Świerk, Poland
  • Department of Medical Physics, The Maria Sklodowska-Curie National Research Institute of Oncology, W. K Roentgena 5 Street, Warsaw, Poland
Bibliografia
  • 1. Ho AY, Hu ZI, Mehrara BJ, Wilkins EG. Radiotherapy in the setting of breast reconstruction: types, techniques, and timing. Lancet Oncol. 2017;18(12):e742-e753. doi:10.1016/S1470-2045(17)30617-4
  • 2. Chen SA, Hiley C, Nickleach D, et al. Breast reconstruction and post-mastectomy radiation practice. Radiation Oncology. 2013;8(1). doi:10.1186/1748-717X-8-45
  • 3. Manyam B V., Shah C, Woody NM, et al. Long-Term Outcomes After Autologous or Tissue Expander/Implant–Based Breast Reconstruction and Postmastectomy Radiation for Breast Cancer. Pract Radiat Oncol. 2019;9(6):e497-e505. doi:10.1016/j.prro.2019.06.008
  • 4. Gee HE, Bignell F, Odgers D, et al. In vivo dosimetric impact of breast tissue expanders on post-mastectomy radiotherapy. J Med Imaging Radiat Oncol. 2016;60(1):138-145. doi:10.1111/1754-9485.12403
  • 5. Naoum GE, Ioakeim MI, Shui AM, et al. Radiation Modality (Proton/Photon), Timing, and Complication Rates in Patients With Breast Cancer Receiving 2-Stages Expander/Implant Reconstruction. Pract Radiat Oncol. 2022;12(6):475-486. doi:https://doi.org/10.1016/j.prro.2022.05.017
  • 6. Sekiguchi K, Kawamori J, Yamauchi H. Breast reconstruction and postmastectomy radiotherapy: complications by type and timing and other problems in radiation oncology. Breast Cancer. 2017;24(4):511-520. doi:10.1007/s12282-017-0754-3
  • 7. Grams MP, Fong de los Santos LE, Antolak JA, et al. Cadaveric verification of the Eclipse AAA algorithm for spine SBRT treatments with titanium hardware. Pract Radiat Oncol. 2016;6(2):131-141. doi:10.1016/j.prro.2015.10.012
  • 8. Glide-Hurst C, Chen D, Zhong H, Chetty IJ. Changes realized from extended bit-depth and metal artifact reduction in CT. Med Phys. 2013;40(6). doi:10.1118/1.4805102
  • 9. Mullins JP, Grams MP, Herman MG, Brinkmann DH, Antolak JA. Treatment planning for metals using an extended CT number scale. J Appl Clin Med Phys. 2016;17(6):179-188. doi:10.1120/jacmp.v17i6.6153
  • 10. Wathen CA, Foje N, van Avermaete T, et al. In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. Sensors (Switzerland). 2013;13(6):6957-6980. doi:10.3390/s130606957
  • 11. Dinc S. Experimental and Monte Carlo evaluation of effects of temporary tissue expanders (TTE) on radiotherapy dose distribution. Ann Med Res. 2020;27(6):1533. doi:10.5455/annalsmedres.2019.12.800
  • 12. Ma CM, Li J. Dose specification for radiation therapy: Dose to water or dose to medium? Phys Med Biol. 2011;56(10):3073-3089. doi:10.1088/0031-9155/56/10/012
  • 13. Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiation Oncology. 2011;6(1):82. doi:10.1186/1748-717X-6-82
  • 14. Dąbrowski R, Drozdyk I, Kukołowicz P. High accuracy dosimetry with small pieces of Gafchromic films. Reports of Practical Oncology and Radiotherapy. 2018;23(2):114-120. doi:10.1016/j.rpor.2018.01.001
  • 15. Wołowiec P, Kukołowicz PF. The analysis of the measurement uncertainty with application of small detectors made of Gafchromic EBT films for the range of doses typical for in vivo dosimetry in teleradiotherapy. Radiat Meas. 2016;92:72-79. doi:10.1016/j.radmeas.2016.08.001
  • 16. Aland T, Moylan R, Kairn T, Trapp J. Effect of verification imaging on in vivo dosimetry results using Gafchromic EBT3 film. Physica Medica. 2016;32(11):1461-1465. doi:10.1016/j.ejmp.2016.10.020
  • 17. Lewis D, Micke A, Yu X, Chan MF. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys. 2012;39(10):6339-6350. doi:10.1118/1.4754797
  • 18. Micke A, Lewis DF, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys. 2011;38(5):2523-2534. doi:10.1118/1.3576105
  • 19. Dönmez Kesen N, Köksal Akbaş C. The investigation of the anisotropic analytical algorithm (Aaa) and the acuros xb (axb) dose calculation algorithms accuracy in surface and buildup region for 6 mv photon beam using gafchromic ebt3 film. Turk Onkoloji Dergisi. 2021;36(3):365-372. doi:10.5505/tjo.2021.2690
  • 20. Trombetta DM, Cardoso SC, Alves VGL, Facure A, Batista DVS, Da Silva AX. Evaluation of the radiotherapy treatment planning in the presence of a magnetic valve tissue expander. PLoS One. 2015;10(2). doi:10.1371/journal.pone.0117548
  • 21. Thompson RCA, Morgan AM. Investigation into dosimetric effect of a MAGNA-SITE TM tissue expander on post-mastectomy radiotherapy. In: Medical Physics. Vol 32. John Wiley and Sons Ltd; 2005:1640-1646. doi:10.1118/1.1914545
  • 22. Asena A, Kairn T, Crowe SB, Trapp J V. Establishing the impact of temporary tissue expanders on electron and photon beam dose distributions. Physica Medica. 2015;31(3):281-285. doi:10.1016/j.ejmp.2015.01.015
  • 23. Chatzigiannis C, Lymperopoulou G, Sandilos P, et al. Dose perturbation in the radiotherapy of breast cancer patients implanted with the Magna‐Site: a Monte Carlo study. J Appl Clin Med Phys. 2011;12(2):58-70. doi:10.1120/jacmp.v12i2.3295
  • 24. Damast S, Beal K, Ballangrud Å, et al. Do metallic ports in tissue expanders affect postmastectomy radiation delivery? Int J Radiat Oncol Biol Phys. 2006;66(1):305-310. doi:10.1016/j.ijrobp.2006.05.017
  • 25. Park SH, Kim YS, Choi J. Dosimetric analysis of the effects of a temporary tissue expander on the radiotherapy technique. Radiologia Medica. 2021;126(3):437-444. doi:10.1007/s11547-020-01297-6
  • 26. Yoon J, Xie Y, Heins D, Zhang R. Modeling of the metallic port in breast tissue expanders for photon radiotherapy. J Appl Clin Med Phys. 2018;19(3):205-214. doi:10.1002/acm2.12320
  • 27. Fogliata A, Nicolini G, Vanetti E, Clivio A, Cozzi L. Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: Fundamental characterization in water. Phys Med Biol. 2006;51(6):1421-1438. doi:10.1088/0031-9155/51/6/004
  • 28. Cheng ZJ, Bromley RM, Oborn B, Carolan M, Booth JT. On the accuracy of dose prediction near metal fixation devices for spine SBRT. J Appl Clin Med Phys. 2016;17(3):475-485. doi:10.1120/jacmp.v17i3.5536
  • 29. Ojala J, Kapanen M, Sipila¨ P, Hyo¨dynmaa S, Pitka¨nen M. The accuracy of Acuros XB algorithm for radiation beams traversing a metallic hip implant - comparison with measurements and Monte Carlo calculations. J Appl Clin Med Phys. 2014;15(5):162-176. doi:10.1120/jacmp.v15i5.4912
  • 30. Pawałowski B, Ryczkowski A, Panek R, Sobocka-Kurdyk U, Graczyk K, Piotrowski T. Accuracy of the doses computed by the Eclipse treatment planning system near and inside metal elements. Sci Rep. 2022;12(1). doi:10.1038/s41598-022-10072-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c164af6-3623-491c-8383-d4217bf1193f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.