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Abstract. In this paper, we study on the fractional nonlocal equation with the logarithmic
nonlinearity formed by

{
LKu(x) + u log |u| + |u|q−2u = 0, x ∈ Ω,

u = 0, x ∈ Rn \ Ω,

where 2 < q < 2∗
s , LK is a non-local operator, Ω is an open bounded set of Rn with Lipschitz

boundary. By using the fractional logarithmic Sobolev inequality and the linking theorem,
we present the existence theorem of the ground state solutions for this nonlocal problem.
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1. INTRODUCTION

In this paper, our main work is to study the existence of the ground state solutions to
the fractional non-local equation with the logarithmic term followed as

{
LKu + u log |u| + |u|q−2u = 0, in Ω,

u = 0, in Rn \ Ω,
(1.1)

where 2 < q < 2∗
s, 2∗

s = 2n
n−2s , s ∈ (0, 1) is fixed with n > 2s, Ω ⊂ Rn is an open

bounded set with Lipschitz boundary, and the integro-differential operator LK is
defined by

LKu(x) = 1
2

∫

Rn

(u(x + y) + u(x − y) − 2u(x))K(y)dy (1.2)

for any x ∈ Rn.
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Here, the kernel K : Rn\{0} → (0, +∞) is a function with the properties such that:

(k1) γK ∈ L1(Rn), where γ(x) = min{|x|2, 1},
(k2) there exist δ > 0 such that K(x) ≥ δ|x|−(n+2s), for any x ∈ Rn\{0},
(k3) K(x) = K(−x), for any x ∈ Rn\{0}.

It is well known that the operator LK in (1.2) is a good generalization of the
fractional Laplacian operators. For instance, if we take K(x) = |x|−(n+2s), x ∈ Rn \{0},
up to some normalization constant, the nonlocal operator LK is equal to the classical
operator

−(−∆)su(x) = 1
2

∫

Rn

u(x + y) + u(x − y) − 2u(x)
|y|(n+2s) dy, x ∈ Rn. (1.3)

Due to the advantage that they provide a powerful way to describe many complicated
physical phenomena, the fractional Laplacian operators (−∆)s play a very important
role in many fields of mathematics, especially in harmonic analysis, probability theory
and potential theory. As a consequence of studies, there are various definitions about
this type of operators. For example, in probability theory (see [2,9,10] for more details),
it can be given via a singular integral by

(−∆)su(x) = C(n, s) lim
ε→0+

∫

Rn\B(x,ε)

u(y) − u(x)
|x − y|n+2s

dy, x ∈ Rn, (1.4)

where B(x, ε) is a ball centered at x ∈ Rn with radius ε. Also, the fractional Laplacian
operator can be defined in an alternative way via the Fourier transform by

(−∆)su(x) = F−1 (|ξ|2s(Fu)(ξ)
)

(x), ξ ∈ Rn, (1.5)

where F is the Fourier transform. In fact, Nezza et al. has proved that (1.4) and (1.5)
are equivalent. We refer to [17] for more information. Since the operator (−∆)s and
its generalization are both nonlocal operators, the fractional equations are naturally
called fractional and nonlocal problems, see [16] for basic results based on variational
methods.

In recent years, much attention has been focused on the nonlocal problems. However,
the nonlocal problems are more difficult than the local ones. In 2007, Caffarelli and
Silvestre established the fundamental characterizations of the fractional Laplacian
equations in [3], including the regularity and extremum principle. This is the pioneering
work for the later related researches and makes the theory of the nonlocal equations
developed rapidly.

For example, more and more researchers have been interested in the nonlocal
problems driven by (−∆)s (or its generalization) with the critical nonlinearity. For
the following equation

{
(−∆)su − λu = |u|2⋆−2u, in Ω,

u = 0, in Rn \ Ω,
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Servadei and Valdinoci discussed the non-trivial existence of solutions for the above
model by two cases. Precisely, in the case of 2s < n < 4s, [21] showed that for any
λ > λs different from the eigenvalue of the operator (−∆)s, there admits a non-trivial
solution. Afterward, in the case of n ≥ 4s, [23] proved that if λ < λ1,s, then there also
exists non-trivial solutions, where λ1,s is the first eigenvalue of the operator (−∆)s.
We refer the readers to [11,13,14,18,29,31] and references therein for the details of
the critical nonlinearity.

Meanwhile, there are many researchers devoted to the nonlocal problems with
the subcritical term (see for examples [15,24,27,28]), especially for the existence and
multiplicity of solutions for the fractional problems involving different nonlinear term,
such as the logarithmic nonlinearity. Precisely, by applying the mountain pass theorem
and linking theorem, Servadei and Valdinoci in [22] derived some existence results for
the following equation

{
(−∆)su − λu = f(x, u), in Ω,

u = 0, in Rn \ Ω,

where f satisfies superlinear and sublinear growth condition at zero and infinity.
Concerning the discrete case of fractional Laplacian, Ciaurri et al. in [5] studied the
fractional discrete Laplacian

(−∆h)su = f,

where u, f : Zh → R and h > 0, 0 < s < 1. (−∆h)s is the fractional powers of the
discrete Laplace operator defined as

(−∆h)su(j) = 1
Γ(−s)

∞∫

0

et∆hu(j) − u(j)
t1+2s

dt,

where Γ is the Gamma function, see also [30] for more related results obtained by
using variational methods. In [7], d’Avenia et al. considered the following fractional
logarithmic Schrödinger equation

(−∆)su + ωu = u log |u|2, x ∈ Rn,

where ω > 0, and the existence of infinite many solutions was obtained by using the
Sobolev inequality of fractional logarithms. We refer to [1,4] and references therein for
more results in this direction.

On the other hand, we notice that, for the elliptic problem involving the Laplacian
operator, by the linking theorem, Liu et al. in [12] proved the existence of the ground
state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity
as form by {

∆2u + c∆u = u log |u|, in Ω,

u = ∆u = 0, on ∂Ω,

where ∆2 denotes the biharmonic operator, Ω is a bounded domain in Rn with
smooth boundary ∂Ω. See also [25] for Kirchhoff-type fractional diffusion problem
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with logarithmic nonlinearity. Concerning further applications of the linking theorem,
for instance, we refer to [8, 22,32].

Inspired by the preceding results, in this article we are devoted to studying the
ground state solutions of the nonlocal problems with the logarithmic term. More
precisely, we investigate the existence of the ground states for the equation (1.1). In
order to derive the desired existence theorem, we first introduce a suitable energy
functional, and show the continuity and the Gateaux derivative. Then, in order to
use the linking theorem, we prove Lemmas 3.1–3.3 and then the existence of the
non-trivial solutions is obtained. Finally, we prove the existence of the ground state of
the nonlocal problem (1.1).

In order to present the main result, we start with the introduction of the essential
function spaces and the basic definitions.

Denote by X the linear space of Lebesgue measurable functions from Rn to R such
that the restriction to Ω of any function u in X belongs to L2(Ω) and the map

(x, y) 7→ (u(x) − u(y))
√

K(x − y) ∈ L2(Q, dxdy),

with the norm defined as

∥u∥X = ∥u∥L2(Ω) +



∫∫

Q

|u(x) − u(y)|2K(x − y)dxdy




1
2

,

where Q = R2n \ (CΩ × CΩ), CΩ = Rn \ Ω. Moreover, let

X0 = {u ∈ X : u = 0 a.e. in Rn \ Ω},

with the norm endowed by

∥u∥X0 =



∫∫

Q

|u(x) − u(y)|2K(x − y)dxdy




1
2

.

Obviously, X0 is the Hilbert space. So, for each u ∈ X0, it can be decomposed as

u =
∞∑

k=1
akφk,

where {φk}∞
k=1 is a set of orthogonal bases for X0. In addition, let

E1 := Pk+1 = {u ∈ X0 : ⟨u, φj⟩X0 = 0, j = 1, . . . , k}

and
E2 := span{φ1, . . . , φk},

then we have X0 = E1 ⊕ E2 (see Proposition 2.4 below).
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Now, we give the definition of the weak solution of the problem (1.1) as follows.

Definition 1.1. we say u ∈ X0 is a weak solution of problem (1.1) if
∫∫

R2n

|u(x) − u(y)||v(x) − v(y)|K(x − y)dxdy =
∫

Ω

u log |u|vdx +
∫

Ω

|u|q−2uvdx (1.6)

holds for any v ∈ X0.

Additionally, throughout this paper, we continue to use ∥ · ∥p as the norm of
Lp(Rn)(1 ≤ p < ∞) and denote by Hs(Rn) the fractional Sobolev space with the
norm as

∥u∥Hs(Rn) =



∫

Rn

|u|2dx




1
2

+



∫∫

R2n

|u(x) − u(y)|2
|x − y|n+2s

dxdy




1
2

(1.7)

and the seminorm given by

[u]2Hs(Rn) =
∫∫

R2n

|u(x) − u(y)|2
|x − y|n+2s

dxdy.

It should be noted that the constant ci > 0 (i = 1, 2, . . .) appeared in this paper may
differ from one line to another.

2. SOME PRELIMINARY PROPOSITIONS

In this section, we will give some necessary definitions, propositions and some results
of the function spaces X and X0 for the main assertion.

First, according Proposition 4.4 in [17] and Lemma 5 in [20], it is easy to
derive Proposition 2.1. For the completeness, we give the proof in details.

Proposition 2.1. Let X
′
0 be the dual space of X0 , then we have that

∥(−∆) s
2 u∥2

L2(Rn) ≤ 2
δ

∥u∥X0 (2.1)

holds for any u ∈ X0.

Proof. For every u ∈ X0, we know that u ∈ Hs(Rn), so it follows that

[u]Hs(Rn) = 1
2∥(−∆) s

2 u∥L2(Rn) (2.2)

Observe the formula (1.7), according to Lemma 5 in [20], we know that
∫∫

R2n

|u(x) − u(y)|2
|x − y|n+2s

dxdy ≤ 1
δ

∫∫

Q

|u(x) − u(y)|2K(x − y)dxdy (2.3)
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where δ is given in (k2). So, combining (2.2) with (2.3), we obtain that

∥(−∆) s
2 u∥2

L2(Rn) ≤ 2
δ

∥u∥X0

as desired.

With the above the fact in mind, we are ready to show a very significant logarithm
inequality for our later argument. Actually, the key tool to prove Proposition 2.2 is
the fractional logarithm Sobolev inequality in [6].
Proposition 2.2. For any real number a > 0 and u ∈ X0, we have

∫

Ω

u2 log
( |u|

∥u∥2

)
dx ≤ a2

δπs
∥u∥X0 − 1

2

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s )

)
∥u∥2

2. (2.4)

Proof. According to the fractional logarithm Sobolev inequality
∫

Rn

u2 log
(

u2

∥u∥2
2

)
dx +

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s )

)
∥u∥2

2 ≤ a2

πs
∥(−∆) s

2 u∥2
2,

together with the property of logarithm
∫

Rn

u2 log
(

u2

∥u∥2
2

)
dx = 2

∫

Rn

u2 log
( |u|

∥u∥2

)
dx,

we derive that
∫

Rn

u2 log
( |u|

∥u∥2

)
dx ≤ a2

2πs
∥(−∆) s

2 u∥2
2 − 1

2

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s )

)
∥u∥2

2.

Notice that for any x ∈ Rn \ Ω, we have u = 0. Then, by applying (2.1), it implies that
∫

Ω

u2 log
( |u|

∥u∥2

)
dx ≤ a2

δπs
∥u∥X0 − 1

2

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s )

)
∥u∥2

2.

Therefore, we finish the proof of Proposition 2.2.

Now, before going on, let us go back to the problem (1.1). Since this equation has
a variational structure, we can define the energy functional J : X0 → R as the form

J(u) = 1
2

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy − 1
2

∫

Ω

u2 log |u|dx

+ 1
4

∫

Ω

u2dx − 1
q

∫

Ω

|u|qdx.

(2.5)

Thanks to the conditions (k1) − (k3), to Proposition 2.2, and to the fact that Lq ↪→ X0
compactly, we can derive easily that J is well defined on X0.

Next, we need to turn out that J ∈ C1(X0,R), namely, Proposition 2.3, which is
equivalent to say that J has a continuous Gâteaux derivative.
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Proposition 2.3. The energy functional J defined as (2.5) has the Fréchet derivative
and is continuous on X0. Moreover, for every u, v ∈ X0, we have that

⟨J ′
(u), v⟩ =

∫∫

Rn

(u(x) − u(y))(v(x) − v(y))K(x − y)dxdy

−
∫

Ω

uv log |u|dx −
∫

Ω

|u|q−2uvdx.

Proof. We will prove this proposition by two steps, namely, the existence and continuity
of Gâteaux derivative. A simple observation tells that there are four terms at the right
side of (2.5). Since the proof methods are similar, here, we only show the first and
third term.

For the first term, applying the definition of Gâteaux, together with the inner
product property, we get that

1
2 lim

t→0

∥u + tv∥2 − ∥u∥2

t
= 1

2 lim
t→0

⟨u + tv, u + tv⟩ − ⟨u, u⟩
t

= 1
2 lim

t→0

2⟨u, tv⟩ + ⟨tv, tv⟩
t

= 1
2 lim

t→0
2⟨u, v⟩ + ⟨v, tv⟩ = ⟨u, v⟩

(2.6)

holds for all u, v ∈ X0.
Now, let us turn to prove the third term. For the simplicity, define

f(u) = 1
4
∫

Ω u2(x)dx. According to the definition of Gâteaux derivative, that is,
for any u, v ∈ X0, it is given as

⟨f ′(u), v⟩ = 1
4 lim

t→0

f(u + tv) − f(u)
t

= lim
t→0

∫

Ω

(u + tv)2 − u2

4t
dx.

So, it is equivalent to show that

⟨f ′(u), v⟩ = lim
t→0

∫

Ω

(u + tv)2 − u2

4t
dx =

∫

Ω

lim
t→0

(u + tv)2 − u2

4t
dx = 1

2

∫

Ω

uvdx.

Given x ∈ Ω and 0 < |t| < 1, by the mean value theorem, there exists a parameter
δ ∈ (0, 1) such that

∣∣∣∣
(u(x) + tv(x))2 − u2(x)

4t

∣∣∣∣ =
∣∣∣∣
1
2(u(x) + δtv(x))v(x)

∣∣∣∣

≤ 1
2 (|u(x)| + |v(x)|) |v(x)|.
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By applying the Hölder inequality and Minkowski inequalities, along with the fact
X0 ↪→ L2(Ω), we derive that

∫

Ω

(|u| + |v|)|v|dx ≤
(∫

Ω

(|u| + |v|)2dx

) 1
2
(∫

Ω

|v|2dx

) 1
2

= (∥u∥L2 + ∥v∥2) · ∥v∥2

≤ C(∥u∥X0 + ∥v∥X0) · ∥v∥X0

where C > 0 is a suitable constant, which implies that (|u| + |v|)|v| ∈ L1(Ω). Thus,
using the Lebesgue theorem yields

⟨f ′(u), v⟩ = lim
t→0

∫

Ω

(u + tv)2 − u2

4t
dx =

∫

Ω

lim
t→0

(u + tv)2 − u2

4t
dx = 1

2

∫

Ω

uvdx. (2.7)

Now, let us turn to prove the continuity of the Gâteaux derivative on X0. Assume
that {un} ⊂ X0 and un → u0 in X0, by the embedding X0 ↪→ Lν (1 ≤ ν < 2⋆

s) again,
which implies

∥un − u0∥ν → 0, as n → ∞

Therefore, due to the definition of the operator norm and the Hölder inequality,
we have that

∥f ′(un) − f ′(u)∥ = sup
h∈X0,∥h∥X0 =1

|⟨f ′(un) − f ′(u), h⟩|

= sup
h∈X0,∥h∥X0 =1

∫

Ω

|(un − u)h|dx

≤ sup
h∈X0,∥h∥X0 =1



∫

Ω

|un − u|2dx




1
2


∫

Ω

|h|2dx




1
2

≤ C sup
h∈X0,∥h∥X0 =1

∥un − u∥2∥h∥X0 → 0.

as n → ∞, where C > 0 is a suitable constant. Therefore, we derive that f ′ is
continuous on X0.
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Similarly, for the second and last term, we have that

− 1
2 lim

t→0

∫

Ω

(u + tv)2 log(u + tv)2· 1
2 − u2 log u2· 1

2

t
dx

= −1
2

∫

Ω

lim
t→0

1
2 (u + tv)2 log(u + tv)2 − 1

2 u2 log u2

t
dx

= −1
2

∫

Ω

lim
t→0

(u + tv)v log(u + tv)2 + (u + tv)vdx

= −1
2

∫

Ω

(uv log u2 + uv)dx

= −1
2

∫

Ω

uv log u2dx − 1
2

∫

Ω

uvdx

= −
∫

Ω

uv log udx − 1
2

∫

Ω

uvdx.

(2.8)

and

−1
q

lim
t→0

∫

Ω

(u + tv)2· q
2 − u2· q

2

t
dx = −

∫

Ω

uq−2uvdx. (2.9)

So, combining (2.6)–(2.9) together, we derive that

⟨J ′
(u), v⟩ =

∫∫

R2n

(u(x) − u(y))(v(x) − v(y))K(x − y)dxdy

−
∫

Ω

uv log |u|dx −
∫

Ω

|u|q−2uvdx.

Furthermore, by using the Hölder inequality and definition of continuity for the linear
operator, it is simple to see that the Gateaux derivative of J is continuous for every
u ∈ X0. Therefore, the desired result holds.

Now, we finish this section with the following propositions.
Proposition 2.4 (Proposition 9 in [22]). Let K : Rn\{0} → (0, +∞) be the function
satisfying assumptions (k1)–(k3) and {λk} be the sequence of the eigenvalues of the
operator −LK with homogeneous Dirichlet boundary data and

0 < λ1 < λ2 ≤ . . . ≤ λk ≤ λk+1 ≤ . . .

and
λk → +∞

as k → +∞, and let {φk} be the sequence of the eigenfunctions corresponding to λk.
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Then:
(1) first eigenvalue λ1 that can be characterized as follows

λ1 = min
u∈X0

∥u∥2=1

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy

or, equivalently

λ1 = min
u∈X0

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy

∫

Ω

|u(x)|2dx

,

(2) for any k ∈ N, the eigenvalues λk can be characterized as follows

λk+1 = min
u∈Pk+1

∥u∥
L2(Ω)=1

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy

or, equivalently

λk+1 = min
u∈Pk+1\0

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy

∫

Ω

|u(x)|2dx

,

where
Pk+1 := {u ∈ X0 : ⟨u, φj⟩X0 = 0, j = 1, . . . , k},

(3) the sequence {φk} is an orthonormal basis of L2(Ω) and an orthogonal basis of X0.
Proposition 2.5 (Proposition 2.3 in [19]). Let K : Rn\{0} → (0, +∞) be the
function satisfying assumptions (k1)–(k3), {λk} be the sequence of the eigenvalues of
the operator −LK with homogeneous Dirichlet boundary data and {φk} be the sequence
of the eigenfunctions corresponding to {λk}. Then, for any k ∈ N, the eigenvalues λk

can be characterized as follows

λk = max
u∈span{φ1,...,φk}\{0}

∫∫
R2n |u(x) − u(y)|2K(x − y)dxdy∫

Ω |u|2dx
.

Proposition 2.6 (Lemma 9 in [23]). Let K : Rn\{0} → (0, +∞) be the function
satisfying assumptions (k1)–(k3). Then the following assertions holds:
(1) the embedding X0 ↪→ Lν(Ω) is compact for any ν ∈ [1, 2∗

s),
(2) the embedding X0 ↪→ L2∗

s (Ω) is continuous.
Proposition 2.7 (Linking Theorem [26]). Let X0 be a real Hilbert space.
Suppose that J ∈ C1(X0,R), X0 = E1

⊕
E2, where dim E2 < ∞, and there exist

R > ρ > 0, α > 0 and 0 ̸= e0 ∈ E1, such that

inf J
(

E1
⋂

Sρ

)
≥ α and sup J(∂T ) ≤ 0,



Ground states for fractional nonlocal equations with logarithmic nonlinearity 167

where

Sρ := {u ∈ X0 : ∥u∥ = ρ} and T := {u = v + te0 : v ∈ E2, t ≥ 0, ∥u∥ ≤ R}.

If all b ∈ [α, sup J(T )] meet the (PS) conditions, then J has a critical value
in [α, sup J(T )].

3. MAIN RESULTS AND PROOFS

To facilitate the upcoming main theorem, we will assert the following lemmas.

Lemma 3.1. Assume that u ∈ E1 satisfies ∥u∥X0 = ρ, then there exist ρ > 0, α > 0
such that J(u) ≥ α.

Proof. Let u ∈ E1, a direct calculation from (2.4) and (2.5) gives that

J(u) = 1
2

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy − 1
2

∫

Ω

u2 log |u|dx

+ 1
4

∫

Ω

u2dx − 1
q

∫

Ω

|u|qdx

= 1
2

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy

− 1
2

∫

Ω

u2 (log |u| − log ∥u∥2 + log ∥u∥2) dx

+ 1
4

∫

Ω

u2dx − 1
q

∫

Ω

|u|qdx

= 1
2

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy − 1
2

∫

Ω

u2 log |u|
∥u∥2

dx

− 1
2 log ∥u∥2

∫

Ω

u2dx + 1
4

∫

Ω

u2dx − 1
q

∫

Ω

|u|qdx

≥ 1
2∥u∥2

X0 − a2

2δπs
∥u∥2

X0 + 1
4

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s )

)
∥u∥2

2

− 1
2∥u∥2

2 log ∥u∥2 + 1
4∥u∥2

2 − 1
q

∥u∥q
q

≥
(

1
2 − a2

2δπs

)
∥u∥2

X0 + 1
4∥u∥2

2 − 1
q

∥u∥q
q

+
{

1
4

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s )

)
− 1

2 log ∥u∥2

}
∥u∥2

2.

(3.1)
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Notice that the number a > 0 is arbitrary in Proposition 2.2, so taking a =
√

δπs

2
leads to

J(u) ≥ 1
4∥u∥2

X0 + 1
4

(
n + n

s
log
√

δπs

2 + log
sΓ( n

2 )
Γ( n

2s )

)
∥u∥2

2

− 1
2∥u∥2

2 log ∥u∥2 + 1
4∥u∥2

2 − 1
q

∥u∥q
q

(3.2)

Meanwhile, when

∥u∥2 ≤ exp
{

1
2

(
n + n

s
log
√

δπs

2 + log
sΓ( n

2 )
Γ( n

2s )

)}

due to the monotonicity of the logarithmic function, we get that

log ∥u∥2 ≤1
2

(
n + n

s
log
√

δπs

2 + log
sΓ( n

2 )
Γ( n

2s )

)
.

Then, we have that
1
2

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s )

)
− log ∥u∥2 ≥ 0.

Furthermore, by virtue of 2 < q < 2∗
s and Ω is a bounded domain, applying Proposi-

tion 2.6 ensures that

J(u) ≥ 1
4∥u∥2

X0 − c

q
∥u∥q

X0
= 1

4∥u∥2
X0

(
1 − 4c

q
∥u∥q−2

X0

)

holds for some suitable constant c. On the other hand, when ∥u∥X0 ≤ q−2
√

q
8c , it follows

that
1 − 4c

q
∥u∥q−2

X0
≥ 1

2 .

Thus, let

ρ = min
{

exp
[

c

2

(
n + n

s
log
√

δπs

2 + log
sΓ( n

2 )
Γ( n

2s )

)]
, q−2

√
q

8c

}

be such that
J(u) ≥ 1

8∥u∥2
X0 = 1

8ρ2 =: α

holds for all u ∈ X0 with ∥u∥X0 = ρ. The proof is thus complete.

Lemma 3.2. Suppose that φk+1 is defined as in Proposition 2.5 and

Rφk+1 = span{φk+1}.

Then, there exists R ≥ 0 such that

J(u) ≤ 0

for all u ∈ E2 ⊕ Rφk+1 with ∥u∥X0 ≥ R.
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Proof. First we recall the inequality

|t2 log t| ≤ Cp(|t| + |t|p), (3.3)

where Cp > 0, for any t > 0, 2 < p < min{4, 2∗
s}. Then, for any u ∈ E2 ⊕ Rφk+1 with

∥u∥X0 = 1, we have

∥u∥2
X0 ≤ λk+1∥u∥2

2. (3.4)

Combining Proposition 2.5, Proposition 2.6, (3.3), (3.4) with (2.5), we obtain

J(tu) = t2

2

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy − t2

2

∫

Ω

u2 log |tu|dx

+ t2

4

∫

Ω

u2dx − tq

q

∫

Ω

|u|qdx

≤ t2

2

∫∫

R2n

|u(x) − u(y)|2K(x − y)dxdy − t2

2 log t

∫

Ω

u2dx

+ t2

2

∫

Ω

|u2 log |u||dx + t2

4

∫

Ω

u2dx − tq

q

∫

Ω

|u|qdx

≤ t2

2 ∥u∥2
X0 − t2 log t

2λk+1
∥u∥2

X0 + t2

2 C(∥u∥X0 + ∥u∥p
X0

)

+ t2

4 ∥u∥2
2 − tq

q

∫

Ω

|u|qdx

≤ t2
[

1
2∥u∥2

X0 + 1
2C(∥u∥X0 + ∥u∥p

X0
) + 1

4∥u∥2
X0

]

− ∥u∥2
X0

2λk+1
t2 log t − tq

q

∫

Ω

|u|qdx,

where C > 0 is a constant. Let

c1 = 1 + C > 0, c2 = 1
2λk+1

> 0, c3 = 1
q

> 0.

Since all norms are equivalent in a subspace of the finite dimensional space,
it is readily to derive that

J(tu) ≤ c1t2 − c2t2 log t − c3tq → −∞ as t → +∞. (3.5)

Therefore, there exists t1 > 0 large enough such that for all u ∈ ∂T with

R = ∥t1u∥X0 = t1,

it results that
J(u) < 0,

where T = {u = v + te0 : v ∈ E2, t ≥ 0, ∥u∥X0 ≤ R}.
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Now, with the above lemmas in hand, we are ready to assert the following result.

Lemma 3.3. Let u ∈ X0 and J(u) given as (2.5). Then, we have that
J(u) satisfies Palais-Smale (PS) condition, that is, for any (PS) sequence
{uj} ⊂ X0, there admits a subsequence strongly convergent in X0.

Proof. Similarly to the proof of Lemma 3.3 in [12], we proceed by two steps.
Step 1. The sequence {uj} is bounded in X0. Assume that {uj} ⊂ X0 is a sequence
satisfying that

|J(uj)| ≤ k (3.6)

and

sup{|⟨J ′
(uj), φ⟩| : φ ∈ X0, ∥φ∥X0 = 1} → 0 as n → ∞, (3.7)

where k is some positive constant. For any j ∈ N, according to (3.6) and (3.7), there
exists a constant b > 0 such that

|J(uj)| ≤ b (3.8)

and

⟨J ′(uj), uj⟩
∥uj∥X0

≤ 2b. (3.9)

From Proposition 2.3, (3.8), (3.9) and (2.5), it follows that

4b(1 + ∥uj∥X0) ≥ 4[J(uj) − 1
2 ⟨J ′

(uj), uj⟩]

= 2
∫∫

R2n

|uj(x) − uj(y)|2K(x − y)dxdy − 2
∫

Ω

u2
j log |uj |dx

+
∫

Ω

u2
jdx − 4

q

∫

Ω

|u|qdx

− 2
∫∫

R2n

|uj(x) − uj(y)|2K(x − y)dxdy + 2
∫

Ω

u2
j log |uj |dx

+ 2
∫

Ω

|uj |q−2u2
jdx

=
∫

Ω

u2
jdx − 4

q

∫

Ω

|uj |qdx + 2
∫

Ω

|uj |q−2u2
jdx

= ∥uj∥2
2 − 4

q
∥uj∥q

q + 2∥uj∥q
q

= ∥uj∥2
2 + 2q − 4

q
∥uj∥q

q.
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Then, it is easy to derive that

∥uj∥2
2 ≤ 4b(1 + ∥uj∥X0) and ∥uj∥q

q ≤ 2qb

q − 2(1 + ∥uj∥X0). (3.10)

According to inequality (3.2) and (3.3), we have

b ≥ |J(uj)|

≥ 1
4∥uj∥2

X0 + 1
4

(
n + n

s
log
√

δπs

2 + log
sΓ( n

2 )
Γ( n

2s )

)
∥uj∥2

2 − 1
2∥uj∥2

2 log ∥uj∥2

+ 1
4∥uj∥2

2 − 1
q

∥uj∥q
q,

which yields

∥uj∥2
X0 ≤ 4b −

(
n + n

s
log
√

δπs

2 + log
sΓ( n

2 )
Γ( n

2s )

)
∥uj∥2

2 + 2∥uj∥2
2 log ∥uj∥2

− ∥uj∥2
2 + 4

q
∥uj∥q

q

≤ 4b −
(

n + n

s
log
√

δπs

2 + log
sΓ( n

2 )
Γ( n

2s ) + 1
)

∥uj∥2
2

+ 2Cp(∥uj∥2 + ∥uj∥p
2) + 4

q
∥uj∥q

q

≤ 4b − 4b

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s ) + 1

)
(1 + ∥uj∥X0)

+ 8b

q − 2(1 + ∥uj∥X0)

+ 2Cp

[
2b1/2(1 + ∥uj∥X0)1/2 + 2pbp/2(1 + ∥uj∥X0)p/2

]

≤ c3∥uj∥X0 + c4,

where c3 > 0, c4 > 0 are some suitable constants, independent of j, and
2 < p < min{4, 2∗

s}. Hence, the proof of Step 1 is complete.
Step 2. The sequence {uj} (up to a subsequence) converges strongly to u0, that is,
the following relation holds

∥uj − u0∥X0 → 0 as j → ∞.

Recall that the sequence {uj} is bounded in X0 and X0 is reflexive Hilbert space.
Then, there exists a subsequence of {uj} weakly convergent to u0 in X0. Without loss
of generality, this subsequence is still denoted by {uj}, that is

uj ⇀ u0 in X0. (3.11)
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First, making use of Proposition 2.3 again yields

⟨J ′
(uj), uj − u0⟩

=
∫∫

R2n

[uj(x) − uj(y)][(uj(x) − u0(x)) − (uj(y) − u0(y))]K(x − y)dxdy

−
∫

Ω

uj(uj − u0) log |uj |dx −
∫

Ω

|uj |q−2uj(uj − u0)dx

=
∫∫

R2n

[(uj(x) − uj(y))2 − (uj(x) − uj(y))(u0(x) − u0(y))]K(x − y)dxdy

−
∫

Ω

uj(uj − u0) log |uj |dx −
∫

Ω

|uj |q−2uj(uj − u0)dx

and

⟨J ′
(u0), uj − u0⟩

=
∫∫

R2n

[u0(x) − u0(y)][(uj(x) − u0(x)) − (uj(y) − u0(y))]K(x − y)dxdy

−
∫

Ω

u0(uj − u0) log |u0|dx −
∫

Ω

|u0|q−2u0(uj − u0)dx

=
∫∫

R2n

[(uj(x) − uj(y))(u0(x) − u0(y)) − (u0(x) − u0(y))2]K(x − y)dxdy

−
∫

Ω

u0(uj − u0) log |u0|dx −
∫

Ω

|u0|q−2u0(uj − u0)dx.

Then, by the definition of the norm for space X0, we have

∥uj − u0∥2
X0 =

∫∫

R2n

[(uj(x) − u0(x)) − (uj(y) − u0(y))]2K(x − y)dxdy

= ⟨J ′
(uj), uj − u0⟩ − ⟨J ′

(u0), uj − u0⟩

+
∫

Ω

(uj log |uj | − u0 log |u0|)(uj − u0)dx

+
∫

Ω

(|uj |q−2uj − |u0|q−2u0)(uj − u0)dx.
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Also, by using the embedding properties repeatedly, along with (3.11), we know that

uj → u0 in Lν(Ω) (3.12)

and

uj → u0 a.e. in Ω, (3.13)

as j → ∞ for any 1 ≤ ν < 2∗
s. Moreover, by the Hölder inequality, (3.12) and Step 1,

we have that
∫

Ω

|uj |q−2uj(uj − u0)dx as j → ∞ (3.14)

and
∫

Ω

|u0|q−2u0(uj − u0)dx as j → ∞. (3.15)

According to the inequality (3.3), we get that
∫

Ω

(uj log |uj | − u0 log |u0|)(uj − u0)dx

≤ 2
∫

Ω

|uj log |uj | 1
2 ||uj − u0|dx − 2

∫

Ω

|u0 log |u0| 1
2 ||uj − u0|dx

≤ 2Cp

∫

Ω

||uj | 1
2 + |uj | p

2 ||uj − u0|dx − 2Cp

∫

Ω

||u0| 1
2 + |u0| p

2 ||uj − u0|dx.

Then, the Hölder inequality, (3.12) and the boundedness of {uj} ensure that
∫

Ω

||uj | 1
2 + |uj | p

2 ||uj − u0|dx → 0 (3.16)

and ∫

Ω

||u0| 1
2 + |u0| p

2 ||uj − u0|dx → 0 (3.17)

as j → ∞. Meanwhile, by (3.7), (3.9) and the boundedness of {uj}, it is easy to
derive that

⟨J ′
(uj), uj − u0⟩ → 0 as j → ∞. (3.18)

and

⟨J ′
(u0), uj − u0⟩ → 0 as j → ∞. (3.19)

Therefore, the assertion of Step 2 comes for (3.17) and (3.18).
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Lemma 3.4. Assume that 2 < q < 2∗
s and the operator K satisfies the conditions

(k1)–(k3). Then, we have that equation (1.1) has a nontrivial solution.

Proof. Lemmas 3.1–3.3 imply that all the conditions for the proposition are satisfied.
Thus, the functional J(u) has a nontrivial critical point in X0, that is to say, the
equation (1.1) has a nontrivial solution.

It should be pointed out that all these basic results given in this section will be
used to obtain Theorem 3.5, which is our main result.

Now, with the aid of compactly embedding properties of the function space and
the above propositions and lemmas, we shall assert the existence of the ground state
solution for the nonlocal problem (1.1).

Theorem 3.5. Assume that 2 < q < 2∗
s and the operator K satisfies the conditions

(k1)–(k3). Then, the problem (1.1) has a ground state solution.

Proof. Let
N = {u ∈ X0 \ {0}} : J

′
(u) = 0}.

By the above proof, we know that N is nonempty. So for any u ∈ N , we get Propo-
sition 2.3. For any solution of (1.1) u ∈ X0, due to that J

′(u) = 0, it follows that
⟨J ′(u), u⟩ = 0. By Propositions 2.2 and 2.3, we can get

0 = ⟨J ′
(u), u⟩

=
∫∫

Q

|u(x) − u(y)|2K(x − y)dxdy −
∫

Ω

u2 log |u|dx −
∫

Ω

|u|q−2u2dx

=
∫∫

Q

|u(x) − u(y)|2K(x − y)dxdy −
∫

Ω

u2(log |u| − log ∥u∥2 + log ∥u∥2)dx

−
∫

Ω

|u|q−2u2dx

=
∫∫

Q

|u(x) − u(y)|2K(x − y)dxdy −
∫

Ω

u2 log |u|
∥u∥2

dx − log ∥u∥2

∫

Ω

u2dx

−
∫

Ω

|u|q−2u2dx

≥
∫∫

Q

|u(x) − u(y)|2K(x − y)dxdy − a2

δπs
∥u∥X0

+ 1
2

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s )

)
∥u∥2

2 − ∥u∥2
2 log ∥u∥2 − ∥u∥q

q

=
(

1 − a2

δπs

)
∥u∥X0 + 1

2

(
n + n

s
log a + log

sΓ( n
2 )

Γ( n
2s )

)
∥u∥2

2

− ∥u∥2
2 log ∥u∥2 − ∥u∥q

q.
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Take a =
√

δπs

2 into the above inequality and let

κ = 1
2

(
n + n

s
log
√

δπs

2 + log
sΓ( n

2 )
Γ( n

2s )

)
.

Then, we obtain that

0 ≥ 1
2∥u∥X0 + (κ − log ∥u∥2) |u∥2

2 − ∥u∥q
q. (3.20)

For any u ∈ N , if κ − log ∥u∥2 ≤ 0, that is ∥u∥2 ≥ eκ, by a simple calculation and
q > 2, we have that

J(u) − 1
2 ⟨J ′

(u), u⟩ = 1
4∥u∥2

2 + q − 2
2q

∥u∥q
q ≥ 1

4∥u∥2
2 ≥ 1

4eκ. (3.21)

On the other side, if κ − log ∥u∥2 > 0, by the expression of (3.20) and
X0 ↪→ Lq(Ω), there exists a constant c1,q > 0, independent of u, such that

1
2∥u∥X0 ≤ ∥u∥q

q ≤ c1,q∥u∥q
X0

, (3.22)

which yields that
∥u∥X0 ≥ (2c1,q)1/(q−1) =: c2,q. (3.23)

Moreover, by adapting the process of (3.21), along with (3.22) and (3.23), there exists
a constant c3,q > 0, such that

J(u) − 1
2 ⟨J ′

(u), u⟩ = 1
4∥u∥2

2 + q − 2
2q

∥u∥q
q ≥ q − 2

2q
∥u∥q

q

≥ c1,q(q − 2)
2q

∥u∥X0 ≥ c3,q.

(3.24)

Notice that 1
2 ⟨J ′

(u), u⟩ = 0 holds for each u ∈ N . So, combining (3.21) with (3.24),
we get that

inf
u∈N

J(u) ≥ c̄ > 0,

where c̄ = min
{ 1

4 eκ, c3,q

}
. This indicates that any limit points of the sequence in N are

different from zero. Let the sequence {un} ⊂ N satisfy limn→∞ J(un) = infu∈N J(u).
Similarly to the process of Lemmas 3.3 and 3.4, we can assert that {un} is bounded
in X0 and there is a subsequence converging strongly to ū0 ∈ X0 \ {0}. Hence, by
J

′(un) = 0 and J ∈ C1(X0,R), we can achieve readily that J(ū0) = 0 and J
′(ū0) = 0.

Therefore, u ∈ X0 is a ground state solution of the problem (1.1) as desired.

Acknowledgements
This project is supported by the Guided Innovation Fund Project of Northeast Petroleum
University (Grant No. 2020YDL-01 and No. 2020YDL-06).



176 Lifeng Guo, Yan Sun, and Guannan Shi

REFERENCES

[1] A.H. Ardila, Existence and stability of standing waves for nonlinear fractional Schrödinger
equation with logarithmic nonlinearity, Nonlinear Anal. 155 (2019), 52–64.

[2] L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differetial Equa-
tion, Abel Symposia 7 (2012), 37–52.

[3] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations 32 (2007), 1245–1260.

[4] J. Chao, A. Szulkin, A logarithmic Schrödinger equation with asympototic conditions on
the potential, J. Math. Anal. Appl. 437 (2016), 241–254.

[5] O. Ciaurri, L. Roncal, P.R. Stinga, J.L. Torrea, J.L. Varona, Nonlocal discrete diffusion
equations and the fractional discrete Laplacian, regularity and applications, Adv. Math.
330 (2018), 688–738.

[6] A. Cotsiolis, N.K. Tavoularis, On logarithmic Sobolev inequalities for higher order
fractional derivatives, C. R. Acad. Sci. Paris, Ser. I 340 (2004), 205–208.

[7] P. D’Avenia, M. Squassina, M. Zenari, Fractional logarithmic Schrödinger equations,
Math. Methods Appl. Sci. 38 (2014), 5207–5216.

[8] Y. Ding, A remark on the linking theorem with applications, Nonlinear Anal. 22 (1994),
237–250.

[9] R.K. Gettor, First passage times for symmetric stable processes in space, Trans. Amer.
Math. Soc. 101 (1961), 75–90.

[10] N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268
(2000), 298–305.

[11] S. Liang, P. Pucci, B. Zhang, Multiple solutions for critical Choquard–Kirchhoff type
equations, Adv. Nonlinear Anal. 10 (2021), 400–419.

[12] H. Liu, Z. Liu, Q. Xiao, Ground state solution for a fourth-order nonlinear elliptic
problem with logarithmic nonlinearity, Appl. Math. Lett. 79 (2018), 176–181.

[13] Z. Liu, M. Squassina, J. Zhang, Ground states for fractional Kirchhoff equations with criti-
cal nonlinearity in low dimension, Nonlinear Differential Equations Appl. 50 (2017), 1–32.

[14] X. Mingqi, V. Rădulescu, B. Zhang, Fractional Kirchhoff problems with critical
Trudinger–Moser nonlinearity, Calc. Var. Partial Differential Equations 58 (2019), 1–27.

[15] J. Mo, Z. Yan, Exitence of solutions to p-Laplace equations with logarithmic nonlinearity,
Electron. J. Differential Equations 88 (2009), 1–10.

[16] G. Molica Bisci, V. Rădulescu, R. Servadei, Variational Methods for Nonlocal Fractional
Equations, Encyclopedia of Mathematics and its Applications, Cambridge University
Press, 2016.

[17] E.D. Nezza, G. Palatucci, E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces,
Bull. Sci. Math. 136 (2012), 521–573.



Ground states for fractional nonlocal equations with logarithmic nonlinearity 177

[18] P. Rabinowitz, Minmax Methods in Critical Point Theory with Applications to Differential
Equations, American Mathematical Society, Rhode Island, USA, 1986.

[19] R. Servadei, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal. 3 (2013),
235–270.

[20] R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators,
J. Math. Anal. Appl. 389 (2012), 889–898.

[21] R. Servadei, E. Valdinoci, A Brézis–Nirenberg result for non-local critical equations in
low dimension, Commun. Pure. Appl. Anal. 12 (2013), 2445–2464.

[22] R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type,
Discrete Cont. Dyn. A 33 (2013), 2105–2137.

[23] R. Servadei, E. Valdinoci, The Brézis–Nirenberg result for the fractional Laplacian, Trans.
Amer. Math. Soc. 367 (2014), 67–102.

[24] L.X. Truong, The Nehari manifold for fractional p-Laplacian equation with logarithmic
nonlinearity on whole space, Comput. Math. with Appl. 78 (2019), 3931–3940.

[25] M. Xiang, D. Yang, B. Zhang, Degenerate Kirchhoff-type fractional diffusion problem
with logarithmic nonlinearity, Asymptotic Anal. 118 (2020), 313–329.

[26] M. Willem, Minimax Theorems, Birkhäuser Boston, Inc. Boston, MA, 1996.

[27] T.F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and
sign-changing weight functions, J. Math. Anal. Appl. 318 (2006), 253–270.

[28] M. Xiang, D. Hu, D. Yang, Least energy solutions for fractional Kirchhoff problems with
logarithmic nonlinearity, Nonlinear Anal. 198 (2020), 111899.

[29] M. Xiang, V. Rădulescu, B. Zhang, Combined effects for fractional Schrödinger–Kirchhoff
systems with critical nonlinearities, ESAIM: COCV 24 (2018), 1249–1273.

[30] M. Xiang, B. Zhang, Homoclinic solutions for fractional discrete Laplacian equations,
Nonlinear Anal. 198 (2020), 111886.

[31] M. Xiang, B. Zhang, V. Rădulescu, Superlinear Schrödinger–Kirchhoff type problems
involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal. 9 (2020),
690–709.

[32] P. Zhao, X. Wang, The existence of positive solution of elliptic system by a linking
theorem on product space, Nonlinear Anal. 56 (2004), 227–240.

Lifeng Guo (corresponding author)
lfguo1981@126.com

School of Mathematics and Statistics
Northeast Petroleum University
Daqing 163318, P.R. China



178 Lifeng Guo, Yan Sun, and Guannan Shi

Yan Sun

School of Mathematics and Statistics
Northeast Petroleum University
Daqing 163318, P.R. China

Guannan Shi
sgncx@163.com

School of Mathematics and Statistics
Northeast Petroleum University
Daqing 163318, P.R. China

Mathematics and Science College
Shanghai Normal University
Shanghai 200233, P.R. China

Received: October 15, 2021.
Revised: November 15, 2021.
Accepted: December 25, 2021.


