Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Blood is a vital part of our circulatory system. It is responsible for transporting oxygen and nutrients, regulating body temperature, and fighting infections. However, any imbalances in blood composition or disruptions in the blood production process can affect the body's overall functioning. Anemia is one of the most common blood diseases diagnosed worldwide. It is characterized by a deficiency of red blood cells or hemoglobin, which reduces the body's ability to transport oxygen. To address this issue, researchers are developing blood substitutes with artificial oxygen carriers that can replace or support the natural function of red blood cells in oxygen transport. Perfluorocarbon-based oxygen carriers (PFCs) such as perfluorodecalin (PFD) are promising for treating severe blood disorders because they can deliver O2 to tissues in various conditions. PFCs have higher storage stability than other oxygen carriers due to their bilayer sphere structure. In this study, we aimed to explore the effects of different concentrations of PFD (1%wt., 2%wt.) and storage time (7, 14, 21, 28 days) on the properties of blood substitutes, including its physicochemical (pH, surface tension, electrolytic conductivity, contact angle, redox potential, oxygen content) and rheological characteristics. The results show that the PFD concentration did not have a statistically significant effect on most of the tested properties, except for the oxygen content, which was higher for the 2%wt. solution after 28 days of incubation. The incubation time significantly impacts the change in surface tension, contact angle, redox potential, and oxygen content. The obtained results are essential due to the use of perfluorodecalin in medicine as an oxygen carrier.
Czasopismo
Rocznik
Tom
Strony
714--720
Opis fizyczny
Bibliogr, 51 poz., tab., wykr.
Twórcy
autor
- Department of Biomaterials and Medical Devices, Institute of Biomedical Engineering, Bialystok University of Technology ul. Wiejska 45c, 15-351 Bialystok, Poland
autor
- Department of Biomaterials and Medical Devices, Institute of Biomedical Engineering, Bialystok University of Technology ul. Wiejska 45c, 15-351 Bialystok, Poland
autor
- Department of Biomaterials and Medical Devices, Institute of Biomedical Engineering, Bialystok University of Technology ul. Wiejska 45c, 15-351 Bialystok, Poland
Bibliografia
- 1. Alexy T, Detterich J, Connes P, Toth K, Nader E, Kenyeres P, et al. Physical Properties of Blood and their Relationship to Clinical Condi-tions. Front Physiol [Internet]. 2022; 13. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2022.906768/full
- 2. Yuyen T. Composition of Blood. In: Transfusion Practice in Clinical Neurosciences. 2022.
- 3. Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bar-tels M, et al. Red blood cells: Chasing interactions. Frontiers in Physi-ology. 2019.
- 4. Stevens GA, Paciorek CJ, Flores-Urrutia MC, Borghi E, Namaste S, Wirth JP, et al. National, regional, and global estimates of anaemia by severity in women and children for 2000–19: a pooled analysis of pop-ulation-representative data. Lancet Glob Health. 2022;10(5).
- 5. Lattimore S, Wickenden C, Brailsford SR. Blood donors in England and North Wales: Demography and patterns of donation. Transfusion (Paris). 2015; 55(1).
- 6. Jägers J, Wrobeln A, Ferenz KB. Perfluorocarbon-based oxygen car-riers: from physics to physiology. Pflugers Archiv European Journal of Physiology. 2021.
- 7. Spahn DR, Casutt M. Eliminating blood transfusions: New aspects and perspectives. Anesthesiology. 2000.
- 8. Grzegorzewski W, Mil E, Gołda K, Czerniecka-Kubicka A, Puchała Ł. Progress in the search for blood substitutes, part 1. Preparations cur-rently used in haemotherapy as an indicator of new drug development. Farm Pol. 2022;78(8).
- 9. Jahr JS. Blood substitutes: Basic science, translational studies and clinical trials. Front Med Technol [Internet]. 2022; 4. Available from: https://www.frontiersin.org/articles/10.3389/fmedt.2022.989829/full
- 10. Charbe NB, Castillo F, Tambuwala MM, Prasher P, Chellappan DK, Carreño A, et al. A new era in oxygen therapeutics? From perfluoro-carbon systems to haemoglobin-based oxygen carriers. Blood Rev [In-ternet]. 2022; 54:100927. Available from: https://linkinghub.else-vier.com/retrieve/pii/S0268960X22000017
- 11. Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci [Internet]. 2021; 294:102407. Available from: https://linkinghub.elsevier.com/re-trieve/pii/S0001868621000488
- 12. Ferenz KB, Steinbicker AU. Artificial oxygen carriers—past, present, and future—a review of the most innovative and clinically relevant con-cepts. Journal of Pharmacology and Experimental Therapeutics. 2019.
- 13. Amberson WR, Mulder AG, Steggerda FR, Flexner J, Pankratz DS. Mammalian Life Without Red Blood Corpuscles. Science (1979) [In-ternet]. 1933; 78(2014):106–7. Available from: https://www.sci-ence.org/doi/10.1126/science.78.2014.106
- 14. Gould SA, Moss GS. Clinical Development of Human Polymerized He-moglobin as a Blood Substitute. World J Surg [Internet]. 1996; 20(9):1200–7. Available from: https://onlinelibrary.wiley.com/doi/10.1007/s002689900183
- 15. Mohanto N, Park Y-J, Jee J-P. Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. J Pharm Investig [Internet]. 2023; 53(1):153–90. Available from: https://link.springer.com/10.1007/s40005-022-00590-y
- 16. Wrobeln A, Laudien J, Groß-Heitfeld C, Linders J, Mayer C, Wilde B, et al. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of bio-compatibility. European Journal of Pharmaceutics and Biopharmaceu-tics [Internet]. 2017; 115:52–64. Available from: https://linking-hub.elsevier.com/retrieve/pii/S0939641116305173
- 17. Jaegers J, Haferkamp S, Arnolds O, Moog D, Wrobeln A, Nocke F, et al. Deciphering the Emulsification Process to Create an Albumin-Per-fluorocarbon-(o/w) Nanoemulsion with High Shelf Life and Bioresistiv-ity. Langmuir. 2021.
- 18. Bodewes SB, Leeuwen OB van, Thorne AM, Lascaris B, Ubbink R, Lisman T, et al. Oxygen Transport during Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells or Artificial Oxygen Carriers. Int J Mol Sci [Internet]. 2020; 22(1):235. Available from: https://www.mdpi.com/1422-0067/22/1/235
- 19. Lambert E, Gorantla VS, Janjic JM. Pharmaceutical design and devel-opment of perfluorocarbon nanocolloids for oxygen delivery in regen-erative medicine. Nanomedicine. 2019.
- 20. Haldar R, Gupta D, Chitranshi S, Singh MK, Sachan S. Artificial Blood: A Futuristic Dimension of Modern Day Transfusion Sciences. Cardio-vasc Hematol Agents Med Chem. 2019;17(1).
- 21. Alayash AI. Hemoglobin-based blood substitutes and the treatment of sickle cell disease: More harm than help? Biomolecules. 2017.
- 22. Connes P, Alexy T, Detterich J, Romana M, Hardy-Dessources MD, Ballas SK. The role of blood rheology in sickle cell disease. Blood Rev. 2016; 30(2).
- 23. Alexy T, Detterich J, Connes P, Toth K, Nader E, Kenyeres P, et al. Physical Properties of Blood and their Relationship to Clinical Condi-tions. Frontiers in Physiology. 2022.
- 24. Woodcock JP. Physical properties of blood and their influence on blood-flow measurement. Reports on Progress in Physics. 1976; 39(1).
- 25. James SH, Kish PE, Sutton TP. Biological and Physical Properties of Human Blood. In: Principles of Bloodstain Pattern Analysis. 2021.
- 26. Kawthalkar S. Essentials of Haematology. Essentials of Haematology. 2013.
- 27. Chintapalli M, Timachova K, Olson KR, Mecham SJ, Devaux D, DeS-imone JM, et al. Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes. Macromole-cules [Internet]. 2016; 49(9):3508–15. Available from: https://pubs.acs.org/doi/10.1021/acs.macromol.6b00412
- 28. Yadav SS, Sikarwar BS, Ranjan P, Janardhanan R, Goyal A. Surface tension measurement of normal human blood samples by pendant drop method. J Med Eng Technol [Internet]. 2020; 44(5):227–36. Available from: https://www.tandfonline.com/doi/full/10.1080/ 03091902.2020.1770348
- 29. Gersh KC, Nagaswami C, Weisel JW. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost. 2009;102(6).
- 30. He D, Kim DA, Ku DN, Hu Y. Viscoporoelasticity of coagulation blood clots. Extreme Mech Lett. 2022; 56.
- 31. Litvinov RI, Weisel JW. Blood clot contraction: Mechanisms, patho-physiology, and disease. Res Pract Thromb Haemost. 2023; 7(1).
- 32. Pitts KL, Abu-Mallouh S, Fenech M. Contact angle study of blood dilu-tions on common microchip materials. J Mech Behav Biomed Mater. 2013;17.
- 33. Wang Z, Paul S, Stein LH, Salemi A, Mitra S. Recent Developments in Blood-Compatible Superhydrophobic Surfaces. Polymers. 2022.
- 34. Pal A, Gope A, Iannacchione G. Temperature and concentration de-pendence of human whole blood and protein drying droplets. Biomol-ecules. 2021;11(2).
- 35. Gokhale SJ, Plawsky JL, Wayner PC. Experimental investigation of contact angle, curvature, and contact line motion in dropwise conden-sation and evaporation. J Colloid Interface Sci [Internet]. 2003; 259(2):354–66. Available from: https://linkinghub.elsevier.com/re-trieve/pii/S0021979702002138
- 36. Podolean I, Fergani MEl, Candu N, Coman SM, Parvulescu VI. Selec-tive oxidation of glucose over transitional metal oxides based magnetic core-shell nanoparticles. Catal Today [Internet]. 2023; 423:113886. Available from: https://linkinghub.elsevier.com/re-trieve/pii/S0920586122003327.
- 37. Carter DE. Oxidation-reduction reactions of metal ions. Environ Health Perspect [Internet]. 1995; 103(suppl 1):17–9. Available from: https://ehp.niehs.nih.gov/doi/10.1289/ehp.95103s117
- 38. Kim J-H, Jung E-A, Kim J-E. Perfluorocarbon-based artificial oxygen carriers for red blood cell substitutes: considerations and direction of technology. J Pharm Investig [Internet]. 2024; 54(3):267–82. Available from: https://link.springer.com/10.1007/s40005-024-00665-y.
- 39. Li S, Pang K, Zhu S, Pate K, Yin J. Perfluorodecalin-based oxygenated emulsion as a topical treatment for chemical burn to the eye. Nat Com-mun [Internet]. 2022; 13(1):7371. Available from: https://www.na-ture.com/articles/s41467-022-35241-1
- 40. Moradi S, Jahanian-Najafabadi A, Roudkenar MH. Artificial Blood Sub-stitutes: First Steps on the Long Route to Clinical Utility. Clin Med In-sights Blood Disord [Internet]. 2016; 9:CMBD.S38461. Available from: http://journals.sagepub.com/doi/10.4137/CMBD.S38461
- 41. Habler OP, Messmer KF. Tissue perfusion and oxygenation with blood substitutes. Adv Drug Deliv Rev [Internet]. 2000; 40(3):171–84. Available from: https://linkinghub.elsevier.com/re-trieve/pii/S0169409X99000484
- 42. Riess JG. The Design and Development of Improved Fluorocarbon-Based Products for use in Medicine and Biology. Artificial Cells, Blood Substitutes, and Biotechnology [Internet]. 1994; 22(2):215–34. http://www.tandfonline.com/doi/full/10.3109/10731199409117416.
- 43. Kuznetsova IN. Perfluorocarbon emulsions: Stability in vitro and in vivo (A review). Pharmaceutical Chemistry Journal. 2003.
- 44. Nader E, Skinner S, Romana M, Fort R, Lemonne N, Guillot N, et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front Physiol [Internet]. 2019; 10(OCT). Available from: https://www.frontiersin.org/arti-cle/10.3389/fphys.2019.01329/full
- 45. Shaik A, Chen Q, Mar P, Kim H, Mejia P, Pacheco H, et al. Blood hyperviscosity in acute and recent COVID-19 infection. Clin Hem-orheol Microcirc [Internet]. 2022; 82(2):149–55. Available from: https://www.medra.org/servlet/aliasRe-solver?alias=iospress&doi=10.3233/CH-221429
- 46. Pop GAM, Duncker DJ, Gardien M, Vranckx P, Versluis S, Hasan D, et al. The clinical significance of whole blood viscosity in (cardio)vas-cular medicine. Neth Heart J. 2002;10(12).
- 47. Pal R. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes. J Biomech [Internet]. 2003; 36(7):981–9. Available from: https://linkinghub.elsevier.com/re-trieve/pii/S0021929003000678
- 48. Yilmaz F, Gundogdu MY. A critical review on blood flow in large arter-ies; relevance to blood rheology, viscosity models, and physiologic conditions. Korea Australia Rheology Journal. 2008.
- 49. Vásquez DM, Ortiz D, Alvarez OA, Briceño JC, Cabrales P. Hemorhe-ological implications of perfluorocarbon based oxygen carrier interac-tion with colloid plasma expanders and blood. Biotechnol Prog [Inter-net]. 2013; 29(3):796–807. Available from: https://aiche.onlineli-brary.wiley.com/doi/10.1002/btpr.1724
- 50. Mukherji B, Sloviter HA. A stable perfluorochemical blood substitute. Transfusion (Paris) [Internet]. 1991; 31(4):324–6. Available from: https://onlinelibrary.wiley.com/doi/10.1046/j.1537-2995.1991. 31491213296.x
- 51. Syed UT, Dias AMA, Crespo J, Brazinha C, Sousa HC de. Studies on the formation and stability of perfluorodecalin nanoemulsions by ultra-sound emulsification using novel surfactant systems. Colloids Surf A Physicochem Eng Asp [Internet]. 2021; 616:126315. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927775721001849
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c0a3def-c3ec-4a40-9bd2-7fb0c4fbdb1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.