Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the course of investigations and the analysis of the possibility of applying selected methods of time frequency processing of non-stationary acoustic signals in the assessment of the technical condition of tram drive components, as well as a new combined method proposed by the authors. An experiment was performed in the form of a pass-by test of the acoustic pressure generated by a Solaris Tramino S105p tram. A comparative analysis has been carried out for an efficient case and a case with damage to the traction gear of the third bogie in the form of broken gear teeth. The recorded signal was analyzed using short-time Fourier transform (STFT) and continuous wavelet transform (CWT). It was found that the gear failure causes an increase in the sound level generated by a given bogie for frequencies within the range of characteristic frequencies of the tested device. Due to the limitations associated with the fixed window resolution in STFT and the inability to directly translate scales to frequencies in CWT, it was found that these methods can be helpful in determining suspected damage, but are too imprecise and prone to errors when the parameters of both transforms are poorly chosen. A new CWT-Cepstrum method was proposed as a solution, using the wavelet transform as a pre-filter before cepstrum signal processing. With a sampling rate of 8192 Hz, a db6 mother wavelet, and a scale range of 1:200, the new method was found to infer the occurrence of damage in an interpretation-free manner. The results were validated on an independent pair of trams of the same model with identical damage and as a reference on a pair of undamaged trams demonstrating that the method can be successfully replicated for different vehicles.
Czasopismo
Rocznik
Tom
Strony
55--75
Opis fizyczny
Bibliogr. 42 poz., il., rys., tab., wykr.
Twórcy
autor
- Poznan University of Technology, Institute of Transport, Poznań, Poland
autor
- Poznan University of Technology, Institute of Transport, Poznań, Poland
autor
- Poznan University of Technology, Institute of Transport, Poznań, Poland
Bibliografia
- [1] Jaworek, K., Kownacki, C., Pauk, J. (2001). Wavelet transform - a modern tool in measured signal analysis (in Polish). Scientific Journals of the Białystok University of Technology. Construction and Operation of Machines, 199-212.
- [2] Jiang, F., Ding, K., He, G., Du, C. (2021). Sparse dictionary design based on edited cepstrum and its application in rolling bearing fault diagnosis. Journal of Sound and Vibration, 490, 115704. https://doi.org/10.1016/j.jsv.2020.115704.
- [3] Johansson, A., Andersson, C. (2005). Out-of round railway wheel a study of wheel polygonalization through simulation of three-dimensional wheel–rail interaction and wear. Vehicle System Dynamics, 43(8), 539-559. https://doi.org/10.1080/00423110500184649.
- [4] Katunin, A., Dragan, K., Dziendzikowski, M. (2015). Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Composite Structures, 127, 1-9. https://doi.org/10.1016/j.comp_struct.2015.02.080.
- [5] Kehtarnavaz, N. (2008). Digital Signal Processing System Design. Elsevier. https://doi.org/10.1016/B978-0-12-374490- 6.X0001-3.
- [6] Kim, Y., Ha, J. M., Na, K., Park, J., Youn, B. D. (2021). Cepstrum-assisted empirical wavelet transform (CEWT)-based improved demodulation analysis for fault diagnostics of planetary gearboxes. Measurement: Journal of the Inter national Measurement Confederation, 183(July), 109796. https://doi.org/10.1016/j.measure ment.2021.109796.
- [7] Komorski, P., Nowakowski, T., Szymanski, G. M., Tomaszewski, F. (2018). Application of Time-Frequency Analysis of Acoustic Signal to Detecting Flat Places on the Rolling Surface of a Tram Wheel. In Springer Proceedings in Mathematics and Statistics (Vol. 249, pp. 205-215). Springer International Publishing. https://doi.org/10.1007/978-3-319-96601- 4_19.
- [8] Li, W., Cao, Y., Li, L., Hou, S. (2022). An Orthogonal Wavelet Transform-Based K-Nearest Neighbor Algorithm to Detect Faults in Bearings. Shock and Vibration, 2022, 1-13. https://doi.org/10.1155/2022/5242106.
- [9] Liang, B., Iwnicki, S., Feng, G., Ball, A., Tran, V. T., Cattley, R. (2013). Railway wheel flat and rail surface defect detection by time-frequency analysis. Chemical Engineering Transactions, 33(January), 745-750. https://doi.org/10.3303/CET1333125.
- [10] Liu, D., Cheng, W., Wen, W. (2020). Rolling bearing fault diagnosis via STFT and improved instantaneous frequency estimation method. Procedia Manufacturing, 49, 166-172. https://doi.org/10.1016/j.promfg.2020.07.014.
- [11] Lopez-Ramirez, M., Romero-Troncoso, R. J., Morinigo-Sotelo, D., Duque-Perez, O., Ledesma-Carrillo, L. M., Camarena-Martinez, D., Garcia-Perez, A. (2016). Detection and diagnosis of lubrication and faults in bearing on induction motors through STFT. 2016 International Conference on Electronics, Communications and Computers (CONIELECOMP), 13-18. https://doi.org/10.1109/CONIELECOMP.2016.7438545.
- [12] Lu, R., Shahriar, M. R., Borghesani, P., Randall, R. B., Peng, Z. (2022). Removal of transfer function effects from transmission error measurements using cepstrum-based operational modal analysis. Mechanical Systems and Signal Processing, 165, 108324. https://doi.org/10.1016/j.ymssp.2021.108324.
- [13] Lyon, R. H., Ordubadi, A. (1982). Use of Cepstra in Acoustical Signal Analysis. Journal of Mechanical Design, 104(2), 303-306. https://doi.org/10.1115/1.3256340.
- [14] Majeed, R., Haddar, M., Chaari, F., Haddar, M. (2023). A Wavelet-Based Statistical Control Chart Approach for Monitoring and Detection of Spur Gear System Faults (pp. 140-152). https://doi.org/10.1007/978-3-031-34190- 8_17.
- [15] Mandic, D. P., Rehman, N. ur, Wu, Z., Huang, N. E. (2013). Empirical Mode Decomposition Based Time-Frequency Analysis of Multivariate Signals: The Power of Adaptive Data Anaysis. IEEE Signal Processing Magazine, 30(6), 74-86. https://doi.org/10.1109/MSP.2013.2267931.
- [16] Milewicz, J., Mokrzan, D., Szymański, G. (2021). The assessment of the technical condition of SO-3 engine turbine blades using an impulse test. Combustion Engines, 184(1), 24-29. https://doi.org/10.19206/CE-133872.
- [17] Milewicz, J., Mokrzan, D., Szymański, G. M. (2023). Environmental Impact Evaluation as a Key Element in Ensuring Sustainable Development of Rail Transport. Sustainability, 15(18), 13754. https://doi.org/10.3390/su151813754.
- [18] Mokrzan, D., Milewicz, J., Szymański, G., Szrama, S. (2021). Vibroacoustic analysis in the assessment of the technical condition of the air craft airframe composite elements. Diagnostyka, 22(2), 11-20. https://doi.org/10.29354/diag/135098.
- [19] Mokrzan, D., Szymański, G. (2021). Time-frequency methods of non-stationary vibroacoustic diagnostic signals processing. Rail Vehicles, 3, 44-57. https://doi.org/10.53502/RAIL143047.
- [20] Newland, D. E. (1997, September 14). Practical Signal Analysis: Do Wavelets Make Any Difference? Volume 1A: 16th Biennial Conference on Mechanical Vibration and Noise. https://doi.org/10.1115/DETC97/VIB-4135.
- [21] Nowakowski, T. (2020). Development of a method for assessing tram vibroacoustic activity based on trackside measurements. Doctoral thesis (in Polish). Poznan University of Technology.
- [22] Nowakowski, T., Komorski, P., Szymański, G. M., Tomaszewski, F. (2019). Wheel-flat detection on trams using envelope analysis with Hilbert transform. Latin American Journal of Solids and Structures, 16(1). https://doi.org/10.1590/1679-78255010.
- [23] Ortiz, J., Betancur, G. R., Gómez, J., Castañeda, L. F., Zajac, G., Gutiérrez-Carvajal, R. (2018). Detection of structural damage and estimation of reliability using a multidimensional monitoring approach. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(4), 1021-1032. https://doi.org/10.1177/0954409717707122.
- [24] Ouamara, D., Boukhnifer, M., Chaibet, A., Maidi, A. (2023). Diagnosis of ITSC fault in the electrical vehicle powertrain system through signal processing analysis. Diagnostyka, 24(1), 1-10. https://doi.org/10.29354/diag/161309.
- [25] Park, K. Il. (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer.
- [26] Prieto-Guerrero, A., Espinosa-Paredes, G. (2019). Linear signal processing methods and decay ratio estimation. In Linear and Non-Linear Stability Analysis in Boiling Water Reactors (pp. 269-314). Elsevier. https://doi.org/10.1016/B978-0-08-102445-4.00006-0.
- [27] Randall, R. B. (1975). Gearbox fault diagnosis using cepstrum analysis. World Congr on the Theory of Mach and Mech, 4th, 169-174.
- [28] Randall, R. B. (2011). Vibration‐based Condition Monitoring. In Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications. Wiley. https://doi.org/10.1002/9780470977668.
- [29] Randall, R. B. (2017). A history of cepstrum analysis and its application to mechanical problems. Mechanical Systems and Signal Processing, 97, 3-19. https://doi.org/10.1016/j.ymssp.2016.12.026.
- [30] Rhif, M., Ben Abbes, A., Farah, I., Martínez, B., Sang, Y. (2019). Wavelet Transform Application for/in Non-Stationary Time-Series Analysis: A Review. Applied Sciences, 9(7), 1345. https://doi.org/10.3390/app9071345
- [31] Saini, K., Dhami, S. S., Vanraj. (2022). Predictive Monitoring of Incipient Faults in Rotating Machinery: A Systematic Review from Data Acquisition to Artificial Intelligence. Archives of Computational Methods in Engineering, 29(6), 4005-4026. https://doi.org/10.1007/s11831-022-09727-6.
- [32] Sapy, G. (1975). Application of Numerical Treatment of Signals for Vibration Diagnostic of Breakdowns: Detection of Fractures of Moving Blades. Automatisme, 20(10), 392-399.
- [33] Shim, J., Kim, G., Cho, B., Koo, J. (2021). Application of Vibration Signal Processing Methods to Detect and Diagnose Wheel Flats in Railway Vehicles. Applied Sciences, 11(5), 2151. https://doi.org/10.3390/app11052151.
- [34] Solaris Bus Coach Sp. z. o. o. (2017). Tramino’s product catologue.
- [35] Staśkiewicz, T., Firlik, B. (2018). Out-of-round tram wheels – current state and measurements. Archives of Transport, 45(1), 88-93. https://doi.org/10.5604/01.3001.0012.0946.
- [36] Szymański, G. M., Misztal, A., Misztal, W. (2017). Application of short time-frequency analysis to determine the extortion frequency of a jet aircraft engine on a test bench. Autobusy: Technika, Eksploatacja, Systemy Transportowe, 18(12), 1328-1332.
- [37] Tang, C., Zhao, Z., Shao, Y. Bin, Long, H., Du, Q. (2020). An Adaptive Time Delay Estimation Method for Broadcast Audio Based on Power Cepstrum. Procedia Computer Science, 166, 258-263. https://doi.org/10.1016/j.procs.2020.02.103.
- [38] Tatara, T., Kożuch, B. (2016). Propagation analysis of ground vibration caused by running trains with the use of FFT and STFT (in Polish). Research and Technical Papers of Polish Association for Transportation Engineers in Cracow. Series: Proceedings, 109(2), 177-189.
- [39] Wu, J. Da, Chen, J. C. (2006). Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines. NDT and E International, 39(4), 304-311. https://doi.org/10.1016/j.ndteint.2005.09.002.
- [40] Yu, M., Chen, W., Cui, J., Wang, J. (2022). Identifying rotor-stator rubbing positions based on intrinsic time scale decomposition-hjorthcepstrum. Journal of Vibration and Control, 107754632110501. https://doi.org/10.1177/10775463211050172.
- [41] Zhao, H., Liu, J., Chen, H., Chen, J., Li, Y., Xu, J., Deng, W. (2023). Intelligent Diagnosis Using Continuous Wavelet Transform and Gauss Convolutional Deep Belief Network. IEEE Transactions on Reliability, 72(2), 692-702. https://doi.org/10.1109/TR.2022.3180273.
- [42] Zhu, Q., Wang, Y., Shen, G. (2012). Research and Comparison of Time-frequency Techniques for Nonstationary Signals. Journal of Computers, 7(4), 954-958. https://doi.org/10.4304/jcp.7.4.954-958.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c07e985-86a4-4088-827f-c15cc77a47a3