PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of D-shaped, reverse D-shaped and U-shaped turbulators in solar air heater on thermo-hydraulic performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As the cost of fuel rises, designing efficient solar air heaters (SAH) becomes increasingly important. By artificially roughening the absorber plate, solar air heaters’ performance can be augmented. Turbulators in different forms like ribs, delta winglets, vortex generators, etc. have been introduced to create local wall turbulence or for vortex generation. In the present work, a numerical investigation on a solar air heater has been conducted to examine the effect of three distinct turbulators (namely D-shaped, reverse D- and U-shaped) on the SAH thermo-hydraulic performance. The simulation has been carried out using the computational fluid dynamics, an advanced and modern simulation technique for Reynolds numbers ranging from 4000 to 18000 (turbulent airflow). For the purpose of comparison, constant ratios of turbulator height/hydraulic diameter and pitch/turbulator height, of 0.021 and 14.28, respectively, were adopted for all SAH configurations. Furthermore, the fluid flow has also been analyzed using turbulence kinetic energy and velocity contours. It was observed that the U-shaped turbulator has the highest value of Nusselt number followed by D-shaped and reverse D-shaped turbulators. However, in terms of friction factor, the D-shaped configuration has the highest value followed by reverse D-shaped and U-shaped geometries. It can be concluded that among all SAH configurations considered, the U-shaped has outperformed in terms of thermohydraulic performance factor.
Rocznik
Strony
3--20
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Veer Madho Singh Bhandari Uttarakhand Technical University, Faculty of Technology, Dehradun 248007, India
  • Veer Madho Singh Bhandari Uttarakhand Technical University, Faculty of Technology, Dehradun 248007, India
  • K.R. Mangalam University, School of Engineering and Technology, Department of Mechanical Engineering, Gurugram, Haryana 122103, India
  • Meerut Institute of Engineering and Technology, Mechanical Engineering Department, Meerut 250005, India
Bibliografia
  • [1] Saxena A., Goel V.: Solar air heaters with thermal heat storages. Chin. J. Eng. (2013), 4, 90279.
  • [2] Saxena A., Varun, El-Sebaii A.A.: A thermodynamic review of solar air heaters. Renew. Sust. Energ. Rev. 43(2015), 863–890.
  • [3] Saxena A., Srivastava G., Tirth V.: Design and thermal performance evaluation of a novel solar air heater. Renew. Energ. 77(2015), 501–511.
  • [4] Bopche S.B., Tandale M.S.: Experimental investigations on heat transfer and frictional characteristics of a turbulent or roughened solar air heater duct. Int. J. Heat Mass Transf. 52(2009), 2834–2848.
  • [5] Singh B.P., Bisht V.S., Bhandari P., Rawat K.S.: Thermo-fluidic modelling of a heat exchanger tube with conical shaped insert having protrusion and dimple roughness. Aptisi Trans. Technopreneurship (ATT) 3(2021), 2, 13–29.
  • [6] Singh B.P., Bisht V.S., Bhandari P.: Numerical study of heat exchanger having protrusion and dimple roughened conical ring inserts. In: Advances in Fluid and Thermal Engineering (B.S. Sikarwar, B. Sundén, Q. Wang, Eds.), Lect. Notes Mech. Eng. Springer, 2021, 151–162.
  • [7] Kharhwal H., Singh S.: Effect of serrated circular rings on heat transfer augmentation of circular tube heat exchanger. Arch. Thermodyn. 43(2022), 2, 129–155.
  • [8] Kumar V.: Effect of serrated circular rings on heat transfer augmentation of circular tube heat exchanger. Arch. Thermodyn. 41(2020), 3, 57–89.
  • [9] Kaewchoothong N., Sukato T., Narato P., Nuntadusit C.: Flow and heat transfer characteristics on thermal performance inside the parallel flow channel with alternative ribs based on photovoltaic/thermal (PV/T) system. Appl. Therm. Eng. 185(2021), 116237.
  • [10] Kaewchoothong N., Maliwan K., Takeishi K., Nuntadusit C.: Effect of inclined ribs on heat transfer coefficient in stationary square channel. Theor. Appl. Mech. Lett. 7(2017), 6, 344–350.
  • [11] Thapa R.K., Bisht V.S., Bhandari P., Rawat K.S.: Numerical study of car radiator using dimple roughness and nanofluid. Arch. Thermodyn. 43(2022), 3, 125–140.
  • [12] Chaube A., Sahoo P.K., Solanki S.C.: Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate. WIT Trans. Eng. Sci. 53(2006), 43–51.
  • [13] Karmare S.V., Tikekar A.N.: Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD. Sol. Energy 84(2010), 3, 409–417.
  • [14] Rajput R.S., Bhagoria J.L., Giri A.K., Kumar A.: Study of heat transfer and friction characteristic of various artificial roughness in solar air heater duct by using computational fluid dynamics (CFD) software. In: Proc. Int. Conf. on Advances in Renewable Energy (ICARE 2010), MANIT Bhopal, June 26-29, 2010, 048.
  • [15] Chaube A., Sahoo P.K., Solanki, S.C.: Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater. Renew. Energ. 31(2006), 317–331.
  • [16] Yadav A.S., Bhagoria J.L.: A CFD based thermo-hydraulic performance analysis of an artificially roughened solar air heater having equilateral triangular sectioned rib roughness on the absorber plate. Int. J. Heat Mass Transf. 70(2014), 1016–1039.
  • [17] Semalty A., Bisht V.S., Bhandari P., Rawat K., Singh J., Kumar K., Dixit A.K.: Thermodynamic investigation on solar air heater having roughness as multiple broken arc and circular protrusion. Mater. Today: Proc. 69(2022), 2, 181–186.
  • [18] Bohra J., Bisht V.S., Bhandari P., Rawat K.S., Singh J., Kumar K., Rawat B.: Effect of variable blockage height ratio on performance for solar air heater roughened with 45◦Z-shaped baffles. Mater. Today: Proc. 69(2022), 2, 153–157.
  • [19] ANSI/ASHRAE Standard 93-2003. Method of Testing to Determine the Thermal Performance of Solar Collectors. American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta 2003.
  • [20] Güler H.Ö., Sözen A., Tuncer A.D., Afshari F., Khanlari A., Şirin C., Gungor A.: Experimental and CFD survey of indirect solar dryer modified with low-cost iron mesh. Sol. Energy 197(2020), 371–384.
  • [21] Afshari F., Muratçobanoğlu B.: Thermal analysis of Fe3O4/water nanofluid in spiral and serpentine mini channels by using experimental and theoretical models. Int. J. Environ. Sci. Technol. 20(2023), 2037–2052.
  • [22] Afshari F., Ceviz M.A., Mandev E., Yıldız F.: Effect of heat exchanger base thickness and cooling fan on cooling performance of Air-To-Air thermoelectric refrigerator; experimental and numerical study. Sustain. Energy Tech. Assess. 52(2022), 102178.
  • [23] Bhandari P., Prajapati Y.K.: Influences of tip clearance on flow and heat transfer characteristics of open type micro pin fin heat sink. Int. J. Therm. Sci. 179(2022),107714.
  • [24] Kaewchoothong N., Nuntadusit C.: Flow and heat transfer behaviors in a twopass rotating channel with rib turbulators using computational fluid dynamics. Heat Transf. Eng. 44(2023), 2, 175–195.
  • 25] Puzu N.O., Prasertsan S., Nuntadusit C.: Heat transfer enhancement and flow characteristics of vortex generating jet on flat plate with turbulent boundary layer, Appl. Therm. Eng. 148(2019), 196–207.
  • [26] Piya I., Narato P., Wae-hayee M., Nuntadusit C.: Flow and heat transfer characteristic of inclined oval trench dimples with numerical simulation. CFD Lett. 12(2020),11, 61–71.
  • [27] Eiamsa-ard S., Nuntadusit C., Promvonge P.: Effect of twin delta-winged twistedtape on thermal performance of heat exchanger tube. Heat Transf. Eng. 34(2013), 15, 1278–1288.
  • [28] Webb R.L., Eckert E.R.G.: Application of rough surface to heat exchanger design. Int. J. Heat Mass Transf. 15(1972), 9, 1647–165.
  • [29] Bhandari P., Prajapati Y.K.: Fluid flow and heat transfer behavior in distinct array of stepped micro-pin fin heat sink. J. Enhanc. Heat Transf. 28(2021), 4, 31–61.
  • [30] Bhandari P.: Numerical investigations on the effect of multi-dimensional stepness in open micro pin fin heat sink using single phase liquid fluid flow. Int. Commun. Heat Mass Transf. 138(2022), 106392.
  • [31] Chauhan R., Singh T., Kumar N., Patnaik A., Thakur N.S.: Experimental investigation and optimization of impinging jet solar thermal collector by Taguchi method. Appl. Therm. Eng. 116(2017), 100–109.
  • [32] Sharma A., Awasthi A., Singh T., Kumar R., Chauhan R.: Experimental investigation and optimization of potential parameters of discrete V down baffled solar thermal collector using hybrid Taguchi-TOPSIS method. Appl. Therm. Eng. 209(2022),118250.
  • [33] Chauhan R., Singh T., Thakur N.S., Patnaik A.: Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method. Renew. Energ. 99(2016), 118–126.
  • [34] Chauhan R., Kim S.C.: Thermo-hydraulic characterization and design optimization of dimpled/protruded absorbers in solar heat collectors. Appl. Therm. Eng.154(2019), 217–227.
  • [35] Chauhan R., Singh T., Patnaik A., Thakur N.S., Kim S.C., Fekete G.: Experimental investigation and multi objective optimization of thermal-hydraulic performance in a solar heat collector. Int. J. Therm. Sci. 147(2020), 106130.
  • [36] Kumar R., Goel V., Singh P., Saxena A., Kashyap A.S., Rai A.: Performance evaluation and optimization of solar assisted air heater with discrete multiple arc shaped ribs. J. Energy Stor. 26(2019), 100978
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c05ecc5-c780-4e1f-9aa0-600556702c8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.