Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this paper a new approach to the design of the high-speed binary-to-residue converter is proposed that allows the attaining of high pipelining rates by eliminating memories used in modulo m generators. The converter algorithm uses segmentation of the input binary word into 2-bit segments. The use and effects of the input word segmentation for the synthesis of converters for five-bit moduli are presented. For the number represented by each segment, the modulo m reduction using a segment modulo m generator is performed. The use of 2-bit segments substantially reduces the hardware amount of the layer of input modulo m generators. The generated residues are added using the multi-operand modulo m adder based on the carry-save adder (CSA) tree, reduction of the number represented by the output CSA tree vectors to the 2m range and fast two-operand modulo m additions. Hardware amount and time delay analyses are also included.
Słowa kluczowe
Rocznik
Tom
Strony
42--56
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
- Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
autor
- The University of Applied Sciences in Elbląg, 1 Wojska Polskiego Street, 82-300 Elbląg, Poland
Bibliografia
- 1. Alia, G., Martinelli, E., 1990, Short Note: VLSI Binary-Residue Converters for Pipelined Processing, The Computer Journal, Vol. 33, No. 5, pp. 473–475.
- 2. Avižienis, A., 1964, A Set of Algorithms for a Diagnosable Arithmetic Unit, Jet Propulsion Laboratory, California Institute of Technology, USA.
- 3. Avižienis A., 1971, Arithmetic Codes: Cost and Effectiveness Studies for Applications in Digital System Design, IEEE Trans. Comput., Vol. C-20, pp. 1322–1331.
- 4. Cardarilli, G.C., Nannarelli, A., Re, M., 2007, Residue Number System for Low-power DSP Applications, Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, IEEE, pp. 1412–1416.
- 5. Czyżak, M., 2004, High-Speed Binary-to-Residue Converter with Improved Architecture, 27th International Conference on Fundamentals of Electrotechnics and Circuit Theory, Gliwice-Niedzica, pp. 431–436.
- 6. Czyżak, M., 2013, Digital Structures for High-Speed Signal Processing, Politechnika Gdańska, pp. 94–95.
- 7. Czyżak, M., Smyk R., 2008, High-Speed FPGA Pipelined Binary-to-Residue Converter, Poznan University of Technology, Academic Journals Electrical Engineering, No. 58, pp. 65–72.
- 8. Huang, K., 1979, Computer Arithmetic: Principles, Architecture, and Design, John Wiley & Sons.
- 9. Luan, Z., Chen, X., Ge, N., Wang, Z., 2014, Simplified Fault-Tolerant FIR Filter Architecture Based on Redundant Residue Number System, Electronics Letters, Vol. 50, No. 23, pp. 1768–1770.
- 10. Miller, D.D., Altschul, R.E., King, J.R., Polky, J.N., 1986, Analysis of the Residue Class Core Function of Akushskii, Burcev, and Pak. In Residue Number System Arithmetic: Modern Applications in Digital Signal Processing, pp. 390–401.
- 11. Piestrak, S.J., 1994a, Design of High-Speed Residue-to-Binary Number System Converter Based on Chinese Remainder Theorem, Proceedings IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 508–511.
- 12. Piestrak, S.J., 1994b, Design of Residue Generators and Multioperand Modulo Adders Using Carry-Save Adders, IEEE Trans. Comp., Vol. 43, pp. 68–77.
- 13. Premkumar, A.B., 2002, A Formal Framework for Conversion from Binary to Residue Numbers, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 49, No. 2, pp. 135–144.
- 14. Szabo, N.S., Tanaka, R.J., 1967, Residue Arithmetic and its Applications to Computer Technology, New York, McGraw-Hill.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c01336b-1ed1-4ed6-9fef-702155a2aca0