PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Software-Defined Radio for Rayleigh and Raman Scattering Measurement in Optical Fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A laboratory system for measuring the Raman scattering light in optical fiber is presented. The system is equipped with the developed driver for 5 mW/1550 nm laser diode, optical circulator, WDM filters to separate Rayleigh and Raman scattered light and InGaAs cooled photodiode to detect the weak scattered radiation. Instead of using expensive network analyzer we propose to use Software-Defined Radio, which ensures the necessary sensitivity and selectivity of detected signals. The preliminary results are presented for about 3 km – length single mode silica optical fiber.
Wydawca
Rocznik
Strony
112--115
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Lodz University of Technology, Institute of Electronics 211/215 Wólczańska St., 90-924 Łódź, Poland
autor
  • Lodz University of Technology, Institute of Electropnics 211/215 Wólczańska St., 90-924 Łódź, Poland
Bibliografia
  • [1] Shatarah I. S. M, Olbrycht R.: Distributed temperature sensing in optical fibers based on Raman scattering: theory and applications. Measurement Automation Monitoring, vol. 63, no. 02, pp. 41–44, 2017.
  • [2] Shatarah I. S. M, Olbrycht R., Więcek B.: Modeling of Spontaneous Raman Scattering in silica light guides for Distributed Temperature Sensing. 14th Quantitative Infrared Thermography Conference (QIRT), pp. 209–220, Berlin 2018.
  • [3] Liehr S.: Fibre Optic Sensing Techniques Based on Incoherent Optical Frequency Domain Reflectometry. BAM Bundesanstalt für Materialforschung und –prüfung, Berlin, 2015
  • [4] Yuksel K., Wuilpart M., Moeyaert V., Mégret P.: Optical Frequency Domain Reflectometry: A Review. 11th International Conference on Transparent Optical Networks (ICTON) , IEEE 2009.
  • [5] Wegmuller M., Oberson P., von der Weid J. P., Guinnard O., Guinnard L., Vinegoni C., Legrk M., Gisin N.: Overview of coherent reflectometry techniques: characterization of components and small systems, in Proc. Symposium on Optical Fiber Measurements, pp. 155–160, Colorado 2000.
  • [6] Nakayama J., Iizaka K, Nielson J.: Optical fiber fault locator by the step frequency method. Applied Optics, vol. 26, no. 3, pp. 440–443, 1987.
  • [7] Dolfi D. W., Nazarathy M, Newton S. A.: 5-mm-resolution optical-frequency-domain reflectometry using a coded phase-reversal modulator. Optics Letters, vol. 13, no. 8, pp. 678–680, 1988.
  • [8] MacDonald R. I: Frequency domain optical reflectometer. Applied Optics, wol. 20, no. 10, pp. 1840-1844, 1981.
  • [9] Mitola J.: The Software Radio Architecture. IEEE Communication Magazine, vol. 33, no. 5, pp. 26–38, 1995.
  • [10] Tuttlebee W.: Software Defined Radio Enabling Technologies. John Wiely & Sons Ltd, England, 2002.
  • [11] Bagheri R., Mirzaei A., Chehrazi S., Heidari M., Lee M., Mikhemar M., Tang W., Abidi A.: An 800MHz to 5GHz SoftwareDefined Radio Reciver in 90nm CMOS. IEEE International Solid-State Circuits Conference, 1-4244-0079-1/06, 2006.
  • [12] Yoshida H., Otaka. S, Kato T., Tsurumi H.: A Software Defined Radio Reciver using the Direct Conversion Principle: Implementation and Evaluation. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications vol. 2, pp. 1044–48, 2000.
  • [13] Akos A. M., Stockmaster M., Tsui J. B. Y., Caschera J.: Direct Bandpass Sampling of Multiple Distinct RF Signals. IEEE Transactions on Communications, vol. 47, no. 7, pp. 983–988, 1999.
  • [14] Ru Z., Moseley N. A, Klumperink E. A. M, Nauta B.: Digitally Enhanced Sofware-Defined Radio Receiver Robust to Out-of-Band Interference. IEEE Journal Of Solid-State Circuits, vol. 44, no. 12, pp. 3359–3375, 2009.
  • [15] Ulversoy T.: Software Defined Radio: Challenges and Opportunities. IEEE Communications Surveys & Tutorials, vol. 12, no. 4, pp. 531–549, 2010.
  • [16] Future Technology Devices International Ltd. FT2232H Dual High Speed USB to Multipurpose UART/FIFO IC. Document No.: FT_000061. 2008. Available at: https://www.ftdichip.com/Support/ Documents/DataSheets/ICs/DS_FT2232H.pdf
  • [17] Microchip Technology Inc. 28/40/44-Pin Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology. Document no.: DS39631E, 2008. Available at: http://ww1.microchip. com/downloads/en/DeviceDoc/39631E.pdf
  • [18] XILINX. FPGA XILINX Spartan 6. Document no.: DS160 V2.0, 2011. Available at: https://www.xilinx.com/support/documentation/ data_sheets/ds160.pdf
  • [19] Integrated Device Technology, Inc. LOCO™ PLL CLOCK MULTIPLIER. Document no.: REV H 051310. Available at: https:// www.idt.com/document/dst/512-datasheet
  • [20] [Maxim Integrated. 622Mbps LAN/WAN Laser Driver with Automatic Power Control and Safety Shutdown. Document no.: 19-1249; Rev 1; 11/04, 2004. Available at: https://datasheets. maximintegrated.com/en/ds/MAX3766.pdf
  • [21] Cypress Semiconductor Corporation. 128-Mbit, 3.0 V Flash Memory. Document Number: 002-00646 Rev. *M, 2017. Available at: https:// www.cypress.com/file/196851/download
  • [22] Analog Devices Inc. 500 MHz Four-Quadrant Multiplier. Document no.: D00894-0-6/12(F), 2012. Available at: https://www.analog.com/ media/en/technical-documentation/data-sheets/AD834.pdf
  • [23] SDRPlay. Radio Spectrum Processor 1A 14-bit SDR. V1.9, 2018. Available at: https://www.sdrplay.com/docs/RSP1Adatasheetv1.9.pdf
  • [24] SDRPlay. Steve Andrew’s Spectrum Analyser Software.2019. Available at: https://www.sdrplay.com/spectrum-analyser/
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bfce09f-f3fb-4d16-abfd-3890a593d922
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.