PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, characterization and biological properties of intercalated kaolinite nanoclays: intercalation and biocompatibility

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aims of the present study were to synthesize the intercalated kaolinite samples with dimethylsulfoxide (DMSO), glutamic acid (GA), succinimide (SIM), cetylpyridiniumchloride (CPC), and hexadecyltrimethylammoniumchloride (HDTMA+); to characterize by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and to determine the hemocompatibility and the cytotoxic effects of the intercalated kaolinite nanoclays on human lymphocytes. It was found that the intercalation with DMSO did not cause any decrease in cell viability until its maximum concentration (500 μg/mL), however, the intercalation with SIM, CPC, and (HDTMA+) causd important decreases in lymphocyte viabilities. It was determined that no significant decrease was observed in protein content of the lymphocyte cells exposed to the kaolinite nanoclays except the ones intercalated with SIM. Furthermore, the pristine kaolinite nanoclays which were intercalated with DMSO, GA, and SIM exhibited high hemocompatibility and the nanoclays intercalated with CPC and (HDTMA+) were highly hemocompatibile for the amounts below 125 and 500 μg/mL, respectively. All the results of this work can serve for the human risk assesment of intercalated nanoclays.
Rocznik
Strony
83--99
Opis fizyczny
Bibliogr. 41 poz., wykr., tab., rys.
Twórcy
autor
  • Balikesir University Faculty of Science and Literature Department of Molecular Biology and Genetics and Chemistry, 10145 Çağış-Balıkesir, Turkey
autor
  • Hitit University Faculty of Engineering Department of Chemical Engineering 19030 Çorum, Turkey
autor
  • Balikesir University Faculty of Science and Literature Department of Molecular Biology and Genetics and Chemistry, 10145 Çağış-Balıkesir, Turkey
autor
  • Balikesir University Faculty of Science and Literature Department of Molecular Biology and Genetics and Chemistry, 10145 Çağış-Balıkesir, Turkey
autor
  • Balikesir University Faculty of Science and Literature Department of Molecular Biology and Genetics and Chemistry, 10145 Çağış-Balıkesir, Turkey
autor
  • Balikesir University Faculty of Science and Literature Department of Molecular Biology and Genetics and Chemistry, 10145 Çağış-Balıkesir, Turkey
Bibliografia
  • 1. Nazir, M.S., Mohamad-Kassim, M.H., Mohapatra, L., Gilani, M.A., Raza, M.R., Majeed, K. (2016) Secondary characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: (Jawaid, M., Qaiss, A.e.K., Bouhfid, R.) Nanoclay reinforced polymer composites, Springer Singapore, 35-55.
  • 2. Maisanaba, S., Pichardo, S., Puerto, M., Gutiérrez-Praena, D., Cameán, A., Jos, A. (2015) Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environmental Research, 138, 233-254.
  • 3. Koosha, M., Mirzadeh, H., Shokrgozar, M.A., Farokhi, M. (2015) Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Advances,5, 10479-10487.
  • 4. Awada, M, López-Galindo, A., Setti, M., El-Rahmany, M., Iborra C.V. (2017) Kaolinite in pharmaceutics and biomedicine. International Journal of Pharmaceutics, 533, 34-48.
  • 5. Hun-Kim, M., Choi, G., Elzatahry, A., Vinu, A., Bin Choy, Y., Choy, J.-H. (2016) Review of clay-drug hybrid materials for biomedical applications: Administration routes. Clays and Clay Minerals,64, 115-130.
  • 6. Karaoglu, M.H., Dogan, M., Alkan, M. (2010) Removal of reactive blue 221 by kaolinite from aqueous solutions. Industrial & Engineering Chemistry Research,49, 1534-1540.
  • 7. Ganguly, S., Dana, K., Mukhopadhyay, T.K., Parya, T.K., Ghatak, S. (2011) Organophilic nano clay: A comprehensive review. Transactions of the Indian Ceramic Society,70, 189-206.
  • 8. Zhang, S., Liu, Q., Cheng, H., Zeng, F. (2015) Combined experimental and theoretical investigation of interactions between kaolinite inner surface and intercalated dimethyl sulfoxide. Applied Surface Science,331, 234-240.
  • 9. Benlikaya, R., Bütün, V., Alkan, M. (2016) Modified kaolinites-polyalkyl methacrylate nanocomposites: Exploring relations between solubility parameters and thermal properties for in situ solution polymerization. Polymer Composites,37, 2333-2341.
  • 10. Lordan, S., Kennedy, J.E., Higginbotham, C.L. (2011) Cytotoxic effects induced by unmodified and organically modified nanoclays in the human hepatic HepG2 cell line. Journal of Applied Toxicology,31, 27-35.
  • 11. Maisanaba, S., Pichardo, S., Puerto, M., Gutiérrez-Praena, D., Cameán, A. M., Jos, A. (2015) Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environmental Research,138, 233-254.
  • 12. Rajiv, S., Jerobin, J., Saranya, V., Nainawat, M., Sharma, A., Makwana, P., Gayathri, C., Bharath, L., Singh, M., Kumar, M., Mukherjee, A., Chandrasekaran, N. (2015) Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human and Experimental Toxicology, 35, 170-183.
  • 13. Assadian, E., Zarei M., Gilani, A., Mehrzad, F., Farshin, Degampanah, H., Pourahmad, J. (2018) Toxicity of Copper Oxide (CuO) Nanoparticles on Human Blood Lymphocytes. Biological Trace Element Research,184, 350-357.
  • 14. Turhan, Y., Dogan, M., Alkan, M. (2010) Poly (vinyl chloride)/ kaolinite nanocomposites: Characterization and thermal and optical properties. Industrial & Engineering Chemistry Research,49, 1503-1513.
  • 15. Ota, Y., Ishihara, S., Otani, K., Yasuda, K., Nishikawa, T., Tanaka, T., Tanaka, J., Kiyomatsu, T., Kawai, K., Hata, K., Nozawa, H., Kazama, S., Yamaguchi, H., Sunami, E., Kitayama, J., Watanabe, T. (2016) Effect of nutrient starvation on proliferation and cytokine secretion of peripheral blood lymphocytes. Molecular Clinical Oncology,4, 607-610.
  • 16. Yilmaz, B., Dogan, S., Celikler Kasimogullari, S. (2018) Hemocompatibility, cytotoxicity, and genotoxicity of poly(methylmethacrylate)/nanohydroxyapatite nanocomposites synthesized by melt blending method. International Journal of Polymeric Materials and Polymeric Biomaterials,67, 1-10.
  • 17. Maisanaba, S., Gutiérrez-Praena, D., Pichardo, S., Moreno, F. J., Jordá, M., Cameán, A. M., Aucejo, S., Jos, Á. (2014) Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2. Journal of Applied Toxicology,34, 714-725.
  • 18. Promega, Celltiter 96® aqueous one solution cell proliferation assay, http://Www.Promega.Com/Protocols/, Promega Corporation, Madison, WI 53711 USA, 2012.
  • 19. Ahamed, M., Akhtar, M., Alhadlaq, H., Khan, M., Alrokayan, S. (2015) Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Chemosphere,135, 278-288.
  • 20. Attik, G., Villat, C., Hallay, F., Pradelle-Plasse, N., Bonnet, H., Moreau, K., Colon, P., Grosgogeat, B. (2014) In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblasts cells: Biodentine™ versus MTA®. International Endodontic Journal,47, 1133-1141.
  • 21. Motlagh, D., Allen, J., Hoshi, R., Yang, J., Lui, K., & Ameer, G. (2007). Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J Biomed Mater Res A, 82(4), 907-916. doi:10.1002/jbm.a.31211
  • 22. Zhang, S., Liu, Q., Cheng, H., Gao, F., Liu, C., Teppen, B. J. (2018) Mechanism responsible for intercalation of dimethyl sulfoxide in kaolinite: Molecular dynamics simulations. Applied Clay Science, 151, 46-53.
  • 23. Mehdi, K., Bendenia, S., Lecomte-Nana, G. L., Batonneau-Gener, I., Rossignol, F., Marouf-Khelifa, K., Khelifa, A. (2018) A new approach about the intercalation of hexadecyltrimethylammonium into halloysite: preparation, characterization, and mechanism. Chemical Papers, 73, 131-139.
  • 24. Elbokl, T.A., Detellier, C. (2008). Intercalation of cyclic imides in kaolinite. Journal of Colloid and Interface Science. 323, 338-348.
  • 25. Lakshmi, M.S., Narmadha, B., Reddy, B.S.R. (2008) Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polymer Degradation and Stability,93, 201-213.
  • 26. Bowman, P.D., Wang, X., Meledeo, M.A., Dubick, M.A., Kheirabadi, B.S. (2011) Toxicity of aluminum silicates used in hemostatic dressings toward human umbilical veins endothelial cells, HeLa cells, and RAW267.4 mouse macrophages. Journal of Trauma,71, 727-732.
  • 27. Imerys. Kaolin China Clay, 2012. Available from: http://www.imerys-perfmins.com/kaolin/eu/kaolin.htm
  • 28. Michel, C., Herzog, S., de Capitani, C., Burkhardt-Holm, P., Pietsch, C. (2014) Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro. PLoS One,9 e100856.
  • 29. Murphy, E.J., Roberts, E., Horrocks, L.A. (1993) Aluminum silicate toxicity in cell cultures. Neuroscience,55, 597-605.
  • 30. Bessa, M.J., Costa, C., Reinosa, J., Pereira, C., Fraga, S., Fernández, J., Bañares, M.A., Teixeira, J.P. (2017) Moving into advanced nanomaterials. Toxicity of rutile TiO2 nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line. Toxicology and Applied Pharmacology,316, 114-122.
  • 31. Rawtani, D., Agrawal, Y.K. (2012) Multifarious applications of halloysite nanotubes: A review. Reviews on Advanced Materials Science,30, 282-295.
  • 32. Ahmed, F. R., Shoaib, M.H., Azhar, M., Um, S.H., Yousuf, R.I., Hashmi, S., Dar, A. (2015) In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloids Surf B Biointerfaces,135, 50-55.
  • 33. Mousa, M., Evans, N. D., Oreffo, R. O. C, Dawson, J. I. (2018) Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials,159, 204-214.
  • 34. Geh, S., Yücel, R., Duffin, R., Albrecht, C., Borm, P. J.A., Armbruster, L., Raulf-Heimsoth, M., Brüning, T., Hoffmann, E., Rettenmeier, A.W., Dopp, E. (2005) Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts. Archives of Toxicology,80, 98-106.
  • 35. Tiburu, E.K., Fleischer, H.N., Aidoo, E.O., Salifu, A., Asimeng, B.O., Zhou, H. (2016) Crystallization of linde type a nanomaterials at two temperatures exhibit differential inhibition of hela cervical cancer cells in vitro. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 28, 66-77.
  • 36. Maisanaba, S., Ortuño, N., Jordá-Beneyto, M., Aucejo, S., Jos, Á. (2017) Development, characterization and cytotoxicity of novel silane-modified clay minerals and nanocomposites intended for food packaging. Applied Clay Science,138, 40-47.
  • 37. Milosevic, N.P., Kojic, V., Curcic, J., Jakimov, D., Milic, N., Banjac, N., Uscumlic, G., Kaliszan, R. (2017) Evaluation of in silico pharmacokinetic properties and in vitro cytotoxic activity of selected newly synthesized n-succinimide derivatives. Journal of Pharmaceutical and Biomedical Analysis, 137, 252-257.
  • 38. Chen, Y.P., Wu, S.H., Chen, I.C., Chen, C.T. (2017) Impacts of cross-linkers on biological effects of mesoporous silica nanoparticles. ACS Applied Materials and Interfaces,9,10254-10265.
  • 39. Vega-Chacón, J., Arbeláez, M.I.A., Jorge, H.J., Marques, R.F.C., Jafelicci Jr, M. (2017) pH-responsive poly(aspartic acid) hydrogel-coatedmagnetite nanoparticles for biomedical applications. Materials Science and Engineering C,77, 366-373.
  • 40. Shanthini, G.M., Martin, C.A., Sakthivel, N., Veerla, S.C., Elayaraja, K., Lakshmi, B. S., Asokan, K., Kanjilal, D., Kalkura, S. N. (2015) Physical and biological properties of the ion beam irradiated PMMA-based composite films. Applied Surface Science,329, 116-126.
  • 41. Liu, H.-Y., Du, L., Zhao, Y.-T., Tian, W.-Q. (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. Journal of Nanomaterials, 2015, 1-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bf8f840-6d3f-4b36-8d42-2b753d7d8ea3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.