PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Underwater Acoustic Sensor Node Scheduling using an Evolutionary Memetic Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underwater Acoustic Sensor Networks (UWASNs) play an important role in monitoring the aqueous environment which has created a lot of interest for researchers and scientists. Utilization of underwater acoustic sensor node (UASN) scheduling for transmission remains, due to the limited acoustic bandwidth available, a challenge in such an environment. One of the methods to overcome this problem is to efficiently schedule UASN data using time division multiple access (TDMA) protocols the parallel transmissions, simultaneously avoiding interference. The paper shows how to optimize the utilization of acoustic sensor node bandwidth by maximizing the possible node transmissions in the TDMA frame and also by minimizing the node's turnaround wait time for its subsequent transmissions by using an evolutionary memetic algorithm (MA). The simulation of MA-TDMA proves that as the size of the network increases, every node in UWASN transmits with an average minimal turnaround transmission time. It also proves that as the TDMA cycle repeats, the overall network throughput gets maximized by increasing the possible node transmissions in the MA-TDMA frame.
Rocznik
Tom
Strony
88--94
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • School of Computing Science and Engineering, VIT, Chennai, Tamil Nadu, India
autor
  • School of Computing Science and Engineering, VIT, Chennai, Tamil Nadu, India
Bibliografia
  • [1] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data Collection, Storage, and Retrieval with an Underwater Sensor Network”, in Proc. 3rd Int. Conf on Embed. Network. Sens. Sys. ACM SenSys, San Diego, CA, USA, November 2005 (doi: 10.1145/1098918-1098936).
  • [2] X. Han, J. Yin, G. Yu, and X. Zhang, “Underwater acoustic communication in time-varying channel environment based on passive time reversal”, J. Acoust. Soc. Am., vol. 139, no. 4, pp. 3326–3334, 2015.
  • [3] I. F. Akildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor networks: Research Challenges”, J. of Ad Hoc Networks, vol. 3, no. 3, pp. 257–279, 2005.
  • [4] H. Kaushal and Georges Kaddoum, “Underwater Optical Wireless Communication”, IEEE Access, vol. 4, pp. 1518–1547, 2016.
  • [5] G. E. Burrowes and J. Y. Khan, “Investigation of a short-range underwater communication channel for MAC protocol design”, in Proc. 4th Conf. on Signal Proces. and Commun. Sys. ICSPS, Gold Coast, QLD, Australia, December 2010, pp. 1–8 (doi: 10.1109/ICSPCS.2010.5709665).
  • [6] I. F. Akyildiz, P. Wang, and S.-C. Lin, “SoftWater: Software-defined networking for next-generation underwater communication systems”, J. of Ad Hoc Networks, vol. 46, pp. 1–11, 2016 (doi: 10.1016/j.adhoc.2016.02.016).
  • [7] I. F. Akildiz, P. Wang, and Z. Sun, “Realizing underwater communication through magnetic induction”, IEEE Commun. Magaz., vol. 53, no. 11, pp. 42–48, 2015.
  • [8] S. Climent, A. S´anchez, J. V. Capella, N. Meratnia, and J. J. Serrano, “Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers”, Sensors, vol. 14, no. 1, pp. 795–833, 2014.
  • [9] K. S. Geethu and A. V. Babu, “Improving energy efficiency performance of ALOHA based underwater acoustic sensor networks”, in Proc. IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics DISCOVER, Mangalore, Karnataka, India, 2016 (doi:10.1109/DISCOVER.2016.7806247).
  • [10] A. Syed, W. Ye, and J. Heidemann, “Comparison and evaluation of the T-Lohi MAC for underwater acoustic sensor networks”, IEEE J. on Select. Areas in Commun., vol. 26, no. 9, pp. 1731–1743, 2008 (doi: 10.1109/JSAC.2008.081212).
  • [11] X. Guo, M. R. Frater, and M. J. Ryan, “Design of a propagation-delay-tolerant MAC protocol for underwater acoustic sensor networks”, IEEE J. of Ocean. Engineer., vol. 34, no. 2, pp. 170–180, 2009.
  • [12] N. Li, J.-F. Mart´ınez, J. M., Meneses Chaus, and M. Eckert, “A survey on underwater routing protocols”, Sensor, vol. 16, no. 3, 2016 (doi: 10.3390/s16030414).
  • [13] L. Hong, F. Hong, Z. Guo, and Z. Li, “ECS: Efficient communication scheduling for underwater sensor networks”, Sensors vol 11, no. 3, pp. 2920-2938, 2011.
  • [14] M. Chitre, S. Shahabodeen, and M. Stojanovic, “Underwater Acoustic Communications and Networking: recent advances and future challenges”, Marine Technol. Soc. J., vol. 42, pp. 103–116, 2008.
  • [15] P.-H. Huang, Y. Chen, B. Krishnamachari, and A. Kumar, “Link scheduling in a single broadcast domain underwater network”, in IEEE Int. Conf. on Sensor Networks, Ubiquitous and Trustworthy Comput. SUTC , Newport Beach, CA, USA, June 2010, pp. 205–212.
  • [16] J. W. Lee and H. S. Cho, “Cascading Multi-Hop Reservation and Transmission in underwater acoustic sensor networks”, Sensors, vol. 14, no. 10, pp. 18390–18409, 2014.
  • [17] R. Diamant and L. Lampe, “Spatial Reuse TDMA for broadcast AdHoc Underwater Acoustic Communication Networks”, IEEE J. of Ocean. Engineer., vol. 36, no. 2, pp. 172–185, 2011.
  • [18] D. Arivudainambi and D. Rekha, “Memetic algorithm for minimum energy broadcast problem in wireless ad hoc networks”, Swarm and Evolut. Computat., Elsevier, vol. 12, pp. 57-64, 2013 (doi: 10/1016/j.swevo.2013.04.001).
  • [19] C.-C. Hsu, M.-S. Kuo, C.-F. Chou, K. C.-J. Lin, “The elimination of spatial-temporal uncertainty in underwater sensor networks”, IEEE/ACM Transact. on Network., vol. 21, no. 4, pp. 1229-1249, 2013.
  • [20] P. Anjangi and M. Chitre, “Design and implementation of superTDMA: A MAC protocol exploiting large propagation delays for underwater acoustic networks”, in ACM Int. Conf. on Underwater Networks and System WUWNET, Washington DC, USA, October 2015, Article no. 1, pp. 1–8.
  • [21] G. Chakraborty, “Genetic algorithm to solve optimum TDMA transmission schedule in broadcast packet radio networks”, IEEE Transact. on Commun., vol. 52, no. 5, pp. 765–777, 2004.
  • [22] L. Hong, F. Hong, Z. Guo, and X. Yang, “A TDMA-based MAC protocol in Underwater Sensor Networks”, in Proc. IEEE 4th Conf. on Wireless Communic., Network. and Mobile Comput. WiCOM, Dalian, Liaoning, China, October 2008, pp. 1–4 (doi: 10.1109/WiCOM.2008.838).
  • [23] K. Kredo, P. Djukic, and P. Mohuputra, “STUMP: Exploiting position diversity in the staggered TDMA underwater MAC protocol”, in Proc. IEEE Conf. on Comput. Communic. Infocom, Rio de Janeiro, Brazil, April 2009, pp. 2961–2965.
  • [24] I. Holyer, “The NP-completeness of edge-colouring”, SIAM J. Comput., vol. 10, no. 4, pp. 718–720, 1981.
  • [25] M. Sun et al., “Novel hysteretic noisy chaotic neural network for broadcast scheduling problems in packet radio networks”, IEEE Transact. on Neural Networks, vol. 21, no. 9, pp. 1422–1433, 2010.
  • [26] P. Moscato, “Memetic Algorithms: A Short Introduction New Ideas in Optimization”, UK Maidenhead: MCGraw-Hill, 1999, pp. 219–234.
  • [27] R. Dawkins, “The Selfish Gene”, Oxford: Clarendon Press, 1976.
  • [28] Y.-D. Chen, C.-Y. Lien, S.-W. Chuang, and K.-P. Shih, “DSSS: A TDMA-based MAC protocol with dynamic slot scheduling strategy for underwater acoustic sensor networks”, in Proc. IEEE OCEANS, Santander, Cantabria, Spain, June 2011, pp. 1–6 (doi: 10.1109/Oceans-Spain.2011.6003632).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bf75e7f-af1e-4a37-b523-15b04c40f1a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.