PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Content of Heavy Metals in the Soil and Litterfall an a Beech-Pine-Spruce Stand in Northern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zawartość metali ciężkich w glebie i opadzie roślinnym w drzewostanie bukowo-sosnowo-świerkowym na obszarze Polski północnej
Języki publikacji
EN
Abstrakty
EN
The concentrations of Cu, Mn, Ni and Zn in the soil and litterfall, as well as influx of the elements to the soils with litterfall were studied in a mixed beech-pine-spruce stand in northern Poland during the years 2007–2009. Annual influx of litterfall to the soil amounted from 3.234 to 4.871 t/ha. Beech, pine and spruce litterfall contributed in total litterfall in 50.8−70.1%, 11.4−11.9% and 1.6−24.0% respectively. The following average annual concentrations of heavy metals in total litterfall during the 3-year study period were noticed: 2469.3–3469.2 mg Mn/kg, 153.6–160.8 mg/kg Zn, 8.0–14.3 mg Ni/kg and 5.0–6.8 mg Cu/kg. In general, the concentrations of Mn and Cu were higher in beech litterfall in comparison to pine and spruce. The contents of Zn and Ni in beech, pine and spruce litterfall were comparable. Annual influx of metals to the soil with litterfall was: 10341.6–14422.4 g/ha Mn, 460.3–748.1 g/ha Zn, 37.4–66.6 g/ha Ni and 20.2–31.8 g/ha Cu. The fluxes were higher for Mn, Zn and Ni, and comparable for Cu in relation to those observed in other beech, pine, spruce and mixed stands in northern Europe.
PL
W latach 2007–2009, w drzewostanie bukowo-sosnowo-świerkowym zlokalizowanym na obszarze Polski Północnej, prowadzono badania zawartości Cu, Mn, Ni i Zn w glebie i opadzie roślinnym oraz dopływu tych składników do gleby z opadem. Roczna produkcja opadu roślinnego w okresie badań wynosiła od 3.234 do 4.871 t/ha. W całkowitej jego masie udział opadu buka wynosił 50.8−70.1%, sosny 11.4−11.9%, a świerka 1.6−24.0%. Średnie ważone roczne stężenia badanych metali w opadzie roślinnym mieściły się w przedziale: 2469.3–3469.2 mg Mn/kg, 153.6–160.8 mg Zn/kg, 8.0–14.3 mg Ni/kg i 5.0–6.8 mg Cu/kg. Na ogół wyższe stężenia Mn i Cu obserwowano w opadzie buka w porównaniu z opadem sosny i świerka, a zawartość Zn i Ni była porównywalna. Roczny dopływ metali do gleby z opadem roślinnym wynosił: 10341.6–14422.4 g Mn/ha, 460.3–748.1 g Zn/ha, 37.4–66.6 g Ni/ha i 20.2–31.8 g Cu/ha. Na tle danych uzyskanych przez innych autorów w drzewostanach bukowych, sosnowych, świerkowych i mieszanych występujących w Europie Północnej, odnotowany w badanym drzewostanie dopływ Mn, Zn i Ni był większy, a Cu porównywalny.
Rocznik
Strony
67--77
Opis fizyczny
Bibliogr. 31 poz., tab.
Twórcy
autor
  • Department of Geoecology and Geoinformation, Institute of Geography and Regional Studies, Pomeranian Academy, Partyzantów 27, 76-200 Słupsk, Poland
autor
  • Environmental Chemistry Research Unit, Institute of Biology and Environmental Protection, Pomeranian Academy, Arciszewskiego 22b, 76-200 Słupsk, Poland
Bibliografia
  • [1] Albrektson, A. (1988). Needle litterfall in stands of Pinus sylvestris L. in Sweden, in relation to site quality-stand age and latitude, Scandinavian Journal of Forest Research, 3, 333–342.
  • [2] Astel, A., Parzych, A. & Trojanowski, J. (2009). Comparision of litterfall and nutrient return in a Vaccinio uliginosi-Betuletum pubescentis and a Empetro nigri-Pinetum forest stands in northern Poland, Forest Ecology and Management, 257, 2331–2341.
  • [3] Augusto, L., Ranger, J., Binkley, D. & Rothe, A. (2002). Impact of several common tree species of European temperate forests on soil fertility, Annales of Forest Science, 59, 233–253.
  • [4] Berg, B., Ekbohm, G., Söderström, B. & Staaf, H. (1991). Reduction of decomposition rates of Scots pine needle litter due to heavy metal pollution, Water, Air & Soil Pollution, 59, 165–177.
  • [5] Bergbäck, B. & Carlsson, M. (1995). Heritage of cadmium and lead. A case study of a Swedish accumulator factory, Forest Ecology and Management, 166, 35–42.
  • [6] Bray, J.R. & Gorham, E. (1964). Litter production in forests of the world, Advances in Ecological Research, 2, 100–157.
  • [7] Christensen, O. (1975). Wood litter fall in relation to abscission, environmental factors and the decomposition cycle in a Danish oak forest, Oikos, 26, 187–195.
  • [8] Cotrufo, M.F., De Santo, A.V., Alfani, A., Bartoli, G. & De Cristofaro, A. (1995). Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods, Environmental Pollution, 89, 81–87.
  • [9] Dziadowiec, H. & Plichta, W. (1985). The effect of nun moth (Lymantria monacha L.) outbreak on characteristics of litter fall in the pine forest, Ekologia Polska, 33, 715–728.
  • [10] Fyles, J.W., Laroi, G.H. & Ellis, R.A. (1986). Litter production in Pinus banksiana dominated stands in northern Albert, Canadian Journal of Forest Research, 16, 772–777.
  • [11] Greszta, J. & Małek, S. (2001). Tenative results of studies on the dynamics of selected chemical properties of the soils in beech stands on the example of experimental plots located in Ojców National Park and Experimental Forest Station in Krynica in the period 1997–1998, Monitoring of processes occurring in beech stands in the changing environmental conditions on the example of the Ojców National Park and the Forest Experimental Station in Krynica, 113–129.
  • [12] Hennessey, T.C., Dougherty, P.M., Cregg, B.M. & Wittwer, R.F. (1992). Annual variation in needle fall of a loblolly pine stand in relation to climate and stand density, Forest Ecology and Management, 51, 329–338.
  • [13] Huang, J.H., Ilgen, G. & Matzner, E. (2011). Fluxes and budgets of Cd, Zn, Cu, Cr and Ni in a remote forested catchment in Germany, Biogeochemistry, 103, 59–70.
  • [14] Hue, N.V., Craddock, G.R. & Adams, F. (1986): Effect of organic acids on aluminum toxicity in subsoils, Soil Science Society of America Journal, 50, 28–34.
  • [15] Jonczak, J. (2011). Structure, dynamics and properties of litterfall in a 110-year-old beech stand with admixture of pine and spruce, Sylwan, 155, 760–768.
  • [16] Jonczak, J. (2013). Dynamics, structure and properties of plant litterfall in a 120-year old beech stand in Middle Pomerania between 2007–2010, Soil Science Annual, 64, 1, 9–14.
  • [17] Jonczak, J. & Czarnecki, A. (2008). Risk assessment for biomass plantations planning on marginal soils as an effect of increasing frequency of weather extreme events, Ecological Questions, 9, 113–118.
  • [18] Jonczak, J., Dziadowiec, H., Kacprowicz, K. & Czarnecki, A. (2010). An assessment of the influence of poplar clones Hybrid275 and Robusta on soil cover based on the characteristics of their plant litterfall, Polish Journal of Soil Science, 42, 2, 9–19.
  • [19] Kabała, C. & Singh, S.S. (2001). Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter, Journal of Environmental Quality, 30, 485–492.
  • [20] Lomander, A. & Johansson, M-B. (2001). Changes in concentrations of Cd, Zn, Mn, Cu and Pb in spruce (Picea abies) needle litter during decomposition, Water, Air, and Soil Pollution, 132, 165–184.
  • [21] Małek, S., Wężyk, P. & Nowak, W. (2001). A quantitative and qualitative analysis of litterfall in beech stands on monitoring plots in the Ojców National Park and the Forest Experimantal Stadion in Krynica in the years 1996–1998. Monitoring of processes occurring in beech stands in the changing environmental conditions on the example of the Ojców National Park and the Forest Experimental Station in Krynica, 93–113.
  • [22] Nilsson, M.Ch., Wardle, D.A. & Dahlberg, A. (1999). Effects of plant litter species composition and diversity on the boreal forest plant-soil system, Oikos, 86, 16–26.
  • [23] Nordén, U. (1994). Leaf litterfall concentrations and fl uxes of elements in deciduous tree species, Scandinavian Journal of Forest Research, 9, 9–16.
  • [24] Ovington, J.D. (1959). The circulation of minerals in plantations of Pinus silvestris L, An. Bot. N.S., 90, 71–80.
  • [25] Pedersen, L.B. & Bille-Hansen, J. (1999). A comparison of litterfall and element fuxes in even aged Norway spruce, sitka spruce and beech stands in Denmark, Forest Ecology and Management, 114, 55–70.
  • [26] Prescott, C.E., Kabzems, R. & Ząbek, L.M. (1999). Effects of fertilization on decomposition rate of Populus tremuloides foliar litter in a boreal forest, Canadian Journal of Forest Research, 29, 393–397.
  • [27] Scheid, S., Gu Nthardt-Georg, M.S., Schulin, R. & Nowacki, B. (2009). Accumulation and solubility of metals during leaf litter decomposition in non-polluted and polluted soil, European Journal of Soil Science, 60, 613–621.
  • [28] Starr, M., Lindroosa, A.J., Ukonmaanahoa, L., Tarvainenb, T. & Tanskanen, H. (2003). Weathering release of heavy metals from soil in comparison to deposition, litterfall and leaching fl uxes in a remote, boreal coniferous forest, Applied Geochemistry, 18, 607–613.
  • [29] Tyler, G. (1992). Critical concentrations of heavy metals in the mor horizon of Swedish forests, Swedish Environmental Protection Agency, Report 4078, (pp. 38), Solna
  • [30] Ukonmaanaho, L., Merilä, P., Nöjd, P. & Nieminen, T.M. (2008). Litterfall production and nutrient return to the forest fl oor in Scots pine and Norway spruce stands in Finland, Boreal Environment Research, 13, 67–91.
  • [31] Warfvinge, P. & Svedrup, H. (1992). Calculating critical loads of acid deposition with PROFILE. A steady state soil chemistry model, Water, Air and Soil Pollution, 63, 119–143.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bf62949-7ab0-41af-8338-173f158918ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.