PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Reduction and Biosorption of Cr(VI) from Aqueous Solutions by Acid- -Modifi ed Guava Seeds: Kinetic and Equilibrium Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of guava seeds (GS) and acid-modified guava seeds (MGS) for the removal of Cr(VI) from aqueous solutions was investigated. Batch-type experiments were performed with Cr(VI) aqueous solutions and biosorbents to determine the kinetic and equilibrium sorption parameters. Results indicated that GS and MGS were capable of reducing and remove Cr(VI) from solutions, but the reduction was only observed at some experimental conditions. Infrared analysis showed that several functional groups were involved in the reduction, and biosorption of Cr(VI), particularly alcohol, phenolic, carboxylic, and methoxymethyl structures. The mechanisms of reduction and biosorption depended upon the type of biosorbent, pH, and temperature of the system. The pseudo-second-order kinetic model describes the kinetic sorption data, and the Langmuir-Freundlich (L-F) model describes the isotherm data in most cases. Significantly high total chromium biosorption capacities were obtained. Acid modification of guava seeds improves chromium biosorption performance.
Słowa kluczowe
Rocznik
Strony
36--47
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr., wz.
Twórcy
  • Master of Science Program in Environmental Engineering, Faculty of Biology, Michoacan University of Saint Nicholas of Hidalgo. C.U., C.P. 58060 Morelia, México
  • Earth Sciences Research Institute, Michoacan University of Saint Nicholas of Hidalgo, Edif. U, C.U., C.P. 58060, Morelia, Michoacán, México
  • Inter-American Institute of Water Technology and Sciences, Autonomous University of the State of Mexico. Carretera Toluca-Atlacomulco km 14.5, Unidad San Cayetano, C.P. 50200, Toluca, Estado de México, México
  • National School of Higher Studies (ENES), Morelia Unit, National Autonomous University of Mexico. Antigua Carretera a Pátzcuaro 8701, col. Ex Hacienda San José de la Huerta, Morelia, México.
  • Faculty of Chemistry Pharmacobiology, Michoacan University of Saint Nicholas of Hidalgo. Tzintzuntzan 173 Col. Matamoros, C.P. 58240, Morelia, Michoacán. México
Bibliografia
  • 1. Prabhakaran, S.K., Vijayaraghavan, K. & Balasubramanian, R. (2009). Removal of Cr (VI) ions by spent tea and coffee dusts: reduction to Cr (III) and biosorption. Ind. Eng. Chem. Res. 48(4), 2113–2117. DOI: .
  • 2. Mathialagan, T. & Viraraghavan, T. (2003). Adsorption of cadmium from aqueous solutions by vermiculite. Sep. Sci. Technol., 38(1), 57–76. DOI: .
  • 3. Navarro, A.E., Ramos, K.P., Agapito, R. & Cuizano, N.A. (2006). Propiedades ácido-básicas de Lentinus edodes y cinética de biosorción de Cadmio (II). Rev. Lat. Rec Nat., 2(2), 47–54. (In spanish) Retrieved January 20, 2020 from https://www.itson.mx/publicaciones/rlrn/Documents/v2-n2-1-propiedades-%C3%A1cido-b%C3%A1sicas-de-lentinus-edodes.pdf.
  • 4. Dehghani, M.H., Sanaei, D., Ali, I. & Bhatnagar, A. (2016). Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J. Mol. Liq. 215, 671–679. DOI: .
  • 5. Abdel Hameed, M.S. (2006). Continuous removal and recovery of lead by alginate beads, free and alginate-immobilized Chlorella vulgaris. Afr. J. Biotech. 5(19). DOI: .
  • 6. Mehta, S.K. & Gaur, J.P. (2005). Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotech. 25(3), 113–152. DOI: .
  • 7. Crist, R.H., Oberholser, K., McGarrity, J., Crist, D.R., Johnson, J.K. & Brittsan, J.M. (1992). Interaction of metals and protons with algae. 3. Marine algae, with emphasis on lead and aluminum. Env. Sci. Technol. 26(3), 496–502. DOI: .
  • 8. Fan, X.D., & Zhang, X.K. (2015). Adsorption of heavy metals by adsorbents from food waste residue. J. Residuals Sci. Technol. 12, 155–158. DOI: .
  • 9. Bayuo, J., Pelig-Ba, K.B. & Abukari, M.A. (2019). Adsorptive removal of chromium (VI) from aqueous solution unto groundnut shell. Appl. Water Sci. 9(4), 107. DOI: .
  • 10. Mangwandi, C., Kurniawan, T.A. & Albadarin, A.B. (2020). Comparative biosorption of chromium (VI) using chemically modified date pits (CM-DP) and olive stone (CM-OS): Kinetics, isotherms and influence of co-existing ions. Chem. Eng. Res. Des. 156, 251–262. DOI:
  • 11. Daneshvar, N., Salari, D. & Aber, S. (2002). Chromium adsorption and Cr (VI) reduction to trivalent chromium in aqueous solutions by soya cake. J. Hazard. Mat. 94(1), 49–61. DOI: .
  • 12. Jawad, A. & Karim, S.K.A. (2020). Cr (VI) ions removal from aqueous solutions using carrot residues as an adsorbent. Science Letters, 13(2), 30–36. DOI: .
  • 13. Das, S.H., Saha, J., Saha, A., Rao, A.K., Chakraborty, B. & Dey, S. (2019). Adsorption study of chromium (VI) by dried biomass of tea leaves. J. Indian Chem. Soc. 96(4), 447–454. Retrieved June 15, 2020 from http://www.indianchemicalsociety.com/portal/uploads/journal/2019_04_6_Extended_1556592447.pdf.
  • 14. Aggarwal, R. & Arora, G. (2020). Assessment of biosorbents for chromium removal from aqueous media. Materials Today: Proceedings. In press. DOI: .
  • 15. Olguin, M.T., Lopez-González, H. & Serrano-Gómez, J. (2013). Hexavalent chromium removal from aqueous solutions by Fe-modified peanut husk. Water Air Soil Pollut. 224(9), 1654. DOI: .
  • 16. Parlayici, Ş. & Pehlivan, E. (2015). Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium (VI) from aqueous solutions. Environ. Monit. Assess. 187(12), 763. DOI: .
  • 17. Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., Lee, Y.B. & Naidu, R. (2016). Oak (Quercus robur) acorn peel as a low-cost adsorbent for hexavalent chromium removal from aquatic ecosystems and industrial effluents. Water Air Soil Pollut. 227(2), 62. DOI: .
  • 18. Wassie, A.B., & Srivastava, V.C. (2016). Teff straw characterization and utilization for chromium removal from wastewater: Kinetics, isotherm and thermodynamic modelling. J. Env. Chem. Eng. 4(1), 1117–1125. DOI: .
  • 19. Ntuli, T.D. & Pakade, V.E. (2020). Hexavalent chromium removal by polyacrylic acid-grafted Macadamia nutshell powder through adsorption–reduction mechanism: adsorption isotherms, kinetics and thermodynamics. Chem. Eng. Commun. 207(3), 279–294. DOI: .
  • 20. Alfaro-Cuevas-Villanueva, R., Hidalgo-Vázquez, A.R., Cortés Penagos, C.D.J., & Cortés-Martínez, R. (2014). Thermodynamic, kinetic, and equilibrium parameters for the removal of lead and cadmium from aqueous solutions with calcium alginate beads. Sci. World J. 2014, DOI: .
  • 21. Pinzón-Bedoya, M.L. & Vera Villamizar, L.E. (2009). Kinetic modeling biosorption of Cr (III) using orange shell. Dyna. 76(160), 95–106. (In spanish) Retrieved february 20, 2020 from http://www.scielo.org.co/scielo.php?pid=S0012-73532009000400009&script=sci_arttext&tlng=en.
  • 22. Netzahuatl-Muñoz, A.R., del Carmen Cristiani-Urbina, M. & Cristiani-Urbina, E. (2015). Chromium biosorption from Cr (VI) aqueous solutions by Cupressus lusitanica bark: kinetics, equilibrium and thermodynamic studies. PLoS One, 10(9). DOI:
  • 23. Cao, W., Wang, Z., Ao, H. & Yuan, B. (2018). Removal of Cr (VI) by corn stalk based anion exchanger: the extent and rate of Cr (VI) reduction as side reaction. Colloids Surf. A Physicochem. Eng. Asp. 539, 424–432. DOI: .
  • 24. Park, D., Yun, Y.S. & Park, J.M. (2005). Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere. 60(10), 1356–1364. DOI: .
  • 25. da Rocha Ferreira, G.L., Vendruscolo, F., & Antoniosi Filho, N.R. (2019). Biosorption of hexavalent chromium by Pleurotus ostreatus. Heliyon, 5(3), e01450. DOI: .
  • 26. Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., & Pichette, A. (2012). Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation. Polym. Degrad. Stabil. 97(7), 1197–1214. DOI:
  • 27. Yun, Y.S. (2004). Characterization of functional groups of protonated Sargassum polycystum biomass capable of binding protons and metal ions. J. Microbiol Biotechn. 14(1), 29–34. Retrieved march 20, 2020 from http://www.jmb.or.kr/journal/download.php?Filedir=../submission/Journal/014/&num=1822.
  • 28. Ghani, W.A.W.A.K., Mohd, A., da Silva, G., Bachmann, R.T., Taufiq-Yap, Y.H., Rashid, U., & Ala’a, H. (2013). Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind. Crop. Prod. 44, 18–24. DOI: .
  • 29. Wahab, M.A., Jellali, S. & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour. Technol. 101(14), 5070–5075. DOI: .
  • 30. Tandy, S., Healey, J.R., Nason, M.A., Williamson, J.C., Jones, D.L. & Thain, S.C. (2010). FT-IR as an alternative method for measuring chemical properties during composting. Bioresour. Technol. 101(14), 5431–5436. DOI: .
  • 31. Vázquez-Guerrero, A., Alfaro-Cuevas-Villanueva, R., Rutiaga-Quiñones, J.G. & Cortés-Martínez, R. (2016). Fluoride removal by aluminum-modified pine sawdust: effect of competitive ions. Ecol. Eng. 94, 365–379. DOI: .
  • 32. Ayoob, S., Gupta, A.K., Bhakat, P.B., & Bhat, V.T. (2008). Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chem. Eng. J. 140(1–3), 6–14. DOI: .
  • 33. Marín, Rangel, V.M., Cortés, Martínez, R., Cuevas Villanueva, R.A., Garnica, Romo, M.G. & Martínez, Flores, H.E. (2012). As (V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifolia swingle) residues. J. Food Sci. 77(1), T10-T14. DOI:
  • 34. Hon, D.N. & Shiraishi, N. (2000). Wood Cellulosic Chemistry New York, USA: CRC press.
  • 35. Fiol, N., Escudero, C. & Villaescusa, I. (2008). Chromium sorption and Cr (VI) reduction to Cr (III) by grape stalks and yohimbe bark. Bioresour. Technol. 99(11), 5030–5036. DOI: .
  • 36. Peng, H., Salmén, L., Stevanic, J. S., & Lu, J. (2019). Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy. Planta. 250(1), 163–171. DOI:
  • 37. Coates, J. (2000). Chapter in Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), New Jersey, USA: John Wiley & Sons.
  • 38. Suksabye, P., Thiravetyan, P., Nakbanpote, W. & Chayabutra, S. (2007). Chromium removal from electroplating wastewater by coir pith. J. Hazard. Mat. 141(3), 637–644. DOI: .
  • 39. Sánchez-Sánchez, H.A., Cortés-Martínez, R. & Alfaro-Cuevas-Villanueva, R. (2013). Fluoride removal from aqueous solutions by mechanically modified guava seeds. Int. J. Sci.: Basic Appl. Res. 11, 159–172. Retrieved june 20, 2020 from https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/1326/1204.
  • 40. Puigdomenech, Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA) (version 18), Inorganic Chemistry Department, Royal Institute of Technology, Stockholm, Sweden 2010. Retrieved December 19, 2019 from https://www.kth.se/che/medusa/downloads-1.386254.
  • 41. Bellú, S., Sala, L., González, J., García, S., Frascaroli, M., Blanes, P., García, J., Sales-Peregrin, J., Atria, A., Ferrion, J., Harada, M., Cong, C. & Niwa, Y. (2010). Thermodynamic and dynamic of chromium biosorption by pectic and lignocellulocic biowastes. J. Wat Res. Prot. 2(10), 888. DOI: .
  • 42. Park, D., Yun, Y. S. & Park, J. M. (2005). Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere. 60(10), 1356–1364. DOI:
  • 43. Park, D., Yun, Y.S. & Park, J.M. (2010). The past, present, and future trends of biosorption. Biotechnol. Bioproc. E. 15(1), 86–102. DOI: .
  • 44. Miretzky, P. & Cirelli, A.F. (2010). Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J. Hazard. Mat. 180(1–3), 1–19. DOI: .
  • 45. Zheng, Y.M., Liu, T., Jiang, J., Yang, L., Fan, Y., Wee, A.T. & Chen, J.P. (2011). Characterization of hexavalent chromium interaction with Sargassum by X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and quantum chemistry calculation. J. Colloid Interf. Sci. 356(2), 74–748. DOI: .
  • 46. Lagrergen, S. (1898). Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39. DOI:
  • 47. Ho, Y.S., McKay, G., Wase, D.A.J. & Forster, C.F. (2000). Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 18(7), 639–650. DOI:
  • 48. Low, M.J.D. (1960). Kinetics of chemisorption of gases on solids. Chem. Rev. 60(3), 267–312. DOI: .
  • 49. Chen, H., Dou, J. & Xu, H. (2017). Removal of Cr (VI) ions by sewage sludge compost biomass from aqueous solutions: reduction to Cr (III) and biosorption. Appl. Surf. Sci. 425, 728–735. DOI: .
  • 50. Araújo, C.S., Almeida, I.L., Rezende, H.C., Marcionilio, S.M., Léon, J.J. & de Matos, T.N. (2018). Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchem. J. 137, 348–354. DOI: .
  • 51. Al-Homaidan, A.A., Al-Qahtani, H.S., Al-Ghanayem, A.A., Ameen, F. & Ibraheem, I.B. (2018). Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi J. Biol. Sci. 25(8), 1733–1738. DOI: .
  • 52. Shouman, M.A., Fathy, N.A., Khedr, S.A., & Attia, A.A. (2013). Comparative biosorption studies of hexavalent chromium ion onto raw and modified palm branches. Adv. Phys. Chem. Vol. 2013. DOI: .
  • 53. Khalifa, E.B., Rzig, B., Chakroun, R., Nouagui, H. & Hamrouni, B. (2019). Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemometr. Intell Lab. 189, 18–26. DOI: .
  • 54. Mahmood-ul-Hassan, M., Suthor, V., Rafique, E. & Yasin, M. (2015). Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes. Environ. Monit. Assess. 187(2), 19. DOI: .
Uwagi
This work was funded by Coordinación de la Investigación Científica-UMSNH (grant CIC-UMSNH-2019).
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bf30b1c-4812-4cf6-84fe-09bc736cf728
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.