PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compact All-metal In-line Combline Coaxial Cavity Diplexer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article describes the design of an all-metal combline coaxial cavity diplexer. The device is based on a Yshaped star-resonant junction which allows to achieve a compact design by positioning the two channels in an in-line and side-byside arrangement. The channels share the same geometry and are tuned to resonance using screws. The device was designed using the coupling matrix method. For verification, a combline cavity diplexer was manufactured and tested for E1 Galileo (1559-1591 GHz) and Iridium (1606-1638 GHz) applications with fractional bandwidth equaling 2%for both channels. The order and the return loss of each channel are 5 and 19.4 dB, respectively. The volume is 154.1 × 36 × 27.8 mm3, corresponding to a normalized volume of 0.810 × 0.189 × 0.146 λ3. The normalized volume per resonator is as low as 0.0047 λ3, while isolation is better than 55 dB. The ratio between the unloaded quality factor and the normalized volume per resonator is as high as 19.8 × 104 λ-3. The design is very easy to manufacture, since it is all-metal and has a simple geometry.
Słowa kluczowe
Rocznik
Tom
Strony
10--14
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • Department of Information Engineering University of Florence, Florence, Italy
  • Department of Information Engineering University of Florence, Florence, Italy
autor
  • Department of Information Engineering University of Florence, Florence, Italy
Bibliografia
  • [1] R.J. Cameron and M. Yu, “Design of Manifold-coupled Multiplexers”, IEEE Microwave Magazine, vol. 8, no. 5, pp. 46–59, 2007 (https://doi.org/10.1109/MMM.2007.904715).
  • [2] A. Rezaei, L. Noori, and H. Mohammadi, “Design of a Novel Compact Microstrip Diplexer with Low Insertion Loss”, Microwave and Optical Technology Letters, vol. 59, no. 7, pp. 1672–1676, 2017 (https://doi.org/10.1002/mop.30600).
  • [3] G. Giannetti and S. Maddio, “Low-loss Compact Diplexer Based on Complementary Spiral Resonators”, Microwave and Optical Technology Letters, vol. 66, no. 6, art. no. e34202, 2024 (https://doi.org/10.1002/mop.34202).
  • [4] G. Giannetti, S. Maddio, and S. Selleri, “A Compact Low-loss Singlelayer Vialess Diplexer Based on Complementary Microstrip Spiral Resonators for Satellite Communications”, Progress in Electromagnetics Research Letters, vol. 122, pp. 45–51, 2024 (https://doi.org/10.2528/PIERL24061104).
  • [5] Y. Xie, F.-C. Chen, Q.-X. Chu, and Q. Xue, “Dual-band Coaxial Filter and Diplexer Using Stub-loaded Resonators”, IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 2691–2700, 2020 (https://doi.org/10.1109/TMTT.2020.2987558).
  • [6] A.Widaa and M. Höft, “Very Compact Diplexer Based on Dual-mode Dielectric TM-mode Resonators”, IEEE Microwave and Wireless Technology Letters, vol. 33, no. 4, pp. 387–390, 2023 (https://doi.org/10.1109/LMWT.2022.3228398).
  • [7] E. Musonda and I.C. Hunter, “Microwave Bandpass Filters Using Re-entrant Resonators”, IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 954–964, 2015 (https://doi.org/10.1109/TMTT.2015.2389216).
  • [8] E. Doumanis, S. Bulja, and D. Kozlov, “Compact Coaxial Filters for BTS Applications”, IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1077–1079, 2017 (https://doi.org/10.1109/LMWC.2017.2757446).
  • [9] Z. Li, V. Rudakov, V. Sledkov, and V. Zemlyakov, “Compact UHF Diplexer on Multi-conductor Coaxial Cavity Resonators”, 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, Russian Federation, 2023 (https://doi.org/10.1109/RSEMW58451.2023.10202047).
  • [10] C. Wang and K.A. Zaki, “Dielectric Resonators and Filters”, IEEE Microwave Magazine, vol. 8, no. 5, pp. 115–127, 2007 (https://doi.org/10.1109/MMM.2007.903648).
  • [11] L. Pelliccia, F. Cacciamani, C. Tomassoni, and R. Sorrentino, “Ultra-compact High-performance Filters Based on TM Dual-mode Dielectric-loaded Cavities”, International Journal of Microwave and Wireless Technologies, vol. 6, no. 2, pp. 151–159, 2013 (https://doi.org/10.1017/S1759078713001001).
  • [12] L. Pelliccia et al., “Compact On-board L-band Dielectric-loaded Diplexer for High-power Applications”, 2019 49th European Microwave Conference, Paris, France, 2019 (https://doi.org/10.23919/EuMC.2019.8910684).
  • [13] M. Dishal, “A Simple Design Procedure for Small Percentage Bandwidth Round-rod Interdigital Filters”, IEEE Transactions on Microwave Theory and Techniques, vol. 13, no. 5, pp. 696–698, 1965 (https://doi.org/10.1109/TMTT.1965.1126066).
  • [14] R.J. Wenzel, “Synthesis of Combline and Capacitively Loaded Interdigital Bandpass Filters of Arbitrary Bandwidth”, IEEE Transactions on Microwave Theory and Techniques, vol. 19, no. 8, pp. 678–686, 1971 (https://doi.org/10.1109/TMTT.1971.1127609).
  • [15] E.G. Cristal, “Tapped-line Coupled Transmission Lines with Applications to Interdigital and Combline Filters”, IEEE Transactions on Microwave Theory and Techniques, vol. 23, no. 12, pp. 1007–1012, 1975 (https://doi.org/0.1109/TMTT.1975.1128734).
  • [16] G.L. Matthaei, L. Young, and E.M.T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Boston: Artech House, 1120 p., 1980 (ISBN: 9780890060995).
  • [17] H.-W. Yao, K.A. Zaki, A.E. Atia, and R. Hershtig, “Full Wave Modeling of Conducting Posts in Rectangular Waveguides and Its Applications to Slot Coupled Combline Filters”, IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 12, pp. 2824–2830, 1995 (https://doi.org/10.1109/22.475641).
  • [18] J.B. Ness, “A Unified Approach to the Design, Measurement, and Tuning of Coupled-resonator Filters”, IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 4, 1998 (https: //doi.org/10.1109/22.664135).
  • [19] J. Thomas, “Cross-coupling in Coaxial Cavity Filters - A Tutorial Overview”, IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 1368–1376, 4 2003 (https://doi.org/10.1109/TMTT.2003.809180).
  • [20] D. Swanson and G. Macchiarella, “Microwave Filter Design by Synthesis and Optimization”, IEEE Microwave Magazine, vol. 8, no. 2, pp. 55–69, 2007 (https://doi.org/10.1109/MMW.2007.335529).
  • [21] J.-X. Xu, L. Yang, Y. Yang, and X.Y. Zhang, “High-Q-factor Tunable Bandpass Filter with Constant Absolute Bandwidth and Wide Tuning Range Based on Coaxial Resonators”, IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 10, pp. 4186–4195, 2019 (https://doi.org/10.1109/TMTT.2019.2926251).
  • [22] J.J. Vague et al., “Inline Combline Filters of Order N with up to N +1 Transmission Zeros”, IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 7, pp. 3287–3297, 2021 (https://doi.org/10.1109/TMTT.2021.3072370).
  • [23] H. Jamshidi-Zarmehri et al., “Efficient Design Procedure for Combline Bandpass Filters with Advanced Electrical Responses”, IEEE Access, vol. 11, pp. 52168–52184, 2023 (https://doi.org/10.1109/ACCESS.2023.3278791).
  • [24] E. Boni, M. Montagni, and L. Pugi, “Project VELA, Upgrades and Simulation Models of the UNIFI Autonomous Sail Drone”, Lectures Notes in Electrical Engineering, vol. 627, pp. 389–396, 2020 (https://doi.org/10.1007/978-3-030-37277-4_45).
  • [25] G. Macchiarella and S. Tamiazzo, “Synthesis of Star-junction Multiplexers”, IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3732–3741, 2010 (https://doi.org/10.1109/TMTT.2010.2086570).
  • [26] E. Boni, G. Giannetti, S. Maddio, and G. Pelosi, “Fast and Efficient Systematic Procedure for and Flexibility on the End Coupling Design in Microwave Filters”, 2023 Kleinheubach Conference, Miltenberg, Germany, 2023 (https://ieeexplore.ieee.org/document/10296826).
  • [27] E. Boni, G. Giannetti, S. Maddio, and G. Pelosi, “An Equation-based Method for the Design of End Couplings in Combline MicrowaveCavity Filters”, 2023 IEEE International Symposium on Antennas and Propagation, Portland, USA, 2023 (https://doi.org/10.1109/USNC-URSI52151.2023.10237496).
  • [28] E. Boni, G. Giannetti, S. Maddio, and G. Pelosi, “Comparison of Inductive and Capacitive End Couplings in the Design of a Combline Microwave Cavity Filter for the E1 Galileo Band”, Advances in Radio Science, vol. 22, pp. 1–8, 2024 (https://doi.org/10.5194/ars-22-1-2024).
  • [29] E. Boni, G. Giannetti, S. Maddio, and G. Pelosi, “Capacitive Endcouplings in Combline Microwave Cavity Filters with Probe Parallel to Resonators’ Axes: Comparison and Design Guidelines”, 2023 Kleinheubach Conference, Miltenberg, Germany, 2023 (https://ieeexplore.ieee.org/document/10296707).
  • [30] R.J. Cameron, C.M. Kudsia, and R.R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, John Wiley & Sons, 897 p., 2018 (https://doi.org/10.1002/9781119292371).
  • [31] Dassault Systemes, “CST Studio Suite”, 2023 [Online]. Available: (https://www.3ds.com/products-services/simulia/products/cst-studio-suite/).
  • [32] G. Macchiarella and S. Tamiazzo, “Novel Approach to the Synthesis of Microwave Diplexers”, IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4281–4290, 2006 (https://doi.org/10.1109/TMTT.2006.885909).
  • [33] Y. Wang and M. Yu, “True Inline Cross-coupled Coaxial Cavity Filters”, IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 2958–2965, 2009 (https://doi.org/10.1109/TMTT.2009.2034221).
  • [34] M. Höft and F. Yousif, “Orthogonal Coaxial Cavity Filters with Distributed Cross-coupling”, IEEE Microwave and Wireless Components Letters, vol. 21, no. 10, pp. 519–521, 2011 (https://doi.org/10.1109/LMWC.2011.2165533).
  • [35] D. Natarajan, “A Practical Design of Lumped, Semi-lumped and Microwave Cavity Filters”, Lecture Notes in Electrical Engineering, vol. 183, pp. 1–157, 2013 (https://doi.org/10.1007/978-3-642-32861-9_1).
  • [36] M.S. Anwar and H.R. Dhanyal, “Design of S-band Combline Coaxial Cavity Bandpass Filter”, 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2018 (https://doi.org/10.1109/IBCAST.2018.8312328).
  • [37] P. Zhao and K.-L.Wu, “Adaptive Computer-aided Tuning of Coupledresonator Diplexers with Wire T-junction”, IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 10, pp. 3856–3865, 2017 (https://doi.org/10.1109/TMTT.2017.2686852).
  • [38] P. Zhao and K.-L. Wu, “An Iterative and Analytical Approach to Optimal Synthesis of a Multiplexer with a Star-junction”, IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3362–3369, 2014 (https://doi.org/10.1109/TMTT.2014.2364222).
  • [39] L. Xu, W. Yu, and J.-X. Chen, “Unbalanced-/Balanced-to-unbalanced Diplexer Based on Dual-mode Dielectric Resonator”, IEEE Access, vol. 9, pp. 53326–53332, 2021 (https://doi.org/10.1109/ACCESS.2021.3070328).
  • [40] Y. Xie, F.-C. Chen, and Q.-X. Chu, “Triple-band Bandpass Filter and Triplexer Using Quad-ridge Cavity Resonators”, IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 8, pp. 3832–3841, 2021 (https://doi.org/10.1109/TMTT.2021.3082556).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bf1b126-e68d-40bc-8806-28b2a7e5f4e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.