Identyfikatory
Warianty tytułu
Ekologiczne opakowania kosmetyczne: wykorzystanie biodegradowalnych polimerów
Języki publikacji
Abstrakty
Traditional plastic packaging used in the cosmetics industry constitutes a significant burden on the environment due to its limited recyclability and long degradation time. In response to this problem, an alternative solution was developed in the form of biodegradable polymer packaging. This work presents the process of creating a safe and functional packaging for cosmetic masses, which is biodegradable under industrial composting conditions. The research included the development of an appropriate polymer composition, analysis of its mechanical and barrier properties, assessment of biodegradability and safety in contact with cosmetic products. Additionally, tests were carried out to optimize the production process and a series of packaging meeting the appropriate requirements were developed. The effect of the work carried out was to obtain a material with functional parameters that also meets environmental standards. The effectiveness of the developed solution was confirmed by obtaining appropriate certificates and a patent for the invention, which proves the innovativeness and implementation potential of the new type of biodegradable cosmetic packaging.
Tradycyjne opakowania z tworzyw sztucznych stosowane w przemyśle kosmetycznym stanowią istotne obciążenie dla środowiska ze względu na ich ograniczoną możliwość recyklingu i długi czas degradacji. W odpowiedzi na ten problem opracowano alternatywne rozwiązanie w postaci biodegradowalnych opakowań polimerowych. Niniejsza praca przedstawia proces tworzenia bezpiecznego i funkcjonalnego opakowania na masy kosmetyczne, które ulega biodegradacji w warunkach kompostowania przemysłowego. Badania obejmowały opracowanie odpowiedniej kompozycji polimerowej, analizę jej właściwości mechanicznych i barierowych, ocenę biodegradowalności oraz bezpieczeństwa w kontakcie z produktami kosmetycznymi. Dodatkowo, przeprowadzono testy nad optymalizacją procesu produkcji oraz opracowano serię opakowań spełniających odpowiedzenie wymagania. Efektem przeprowadzonych prac było uzyskanie materiału o parametrach użytkowych, który jednocześnie spełnia normy środowiskowe. Skuteczność opracowanego rozwiązania potwierdzono poprzez uzyskanie stosownych certyfikatów oraz patentu na wynalazek, co dowodzi innowacyjności i potencjału wdrożeniowego nowego typu biodegradowalnych opakowań kosmetycznych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2--6
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
- The Department of Plastics Processing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, ul. Narbutta 85, 02-524 Warsaw, Polska
autor
- Novo-Pak Sp. z o.o. Całowanie 103A, 05-480 Karczew, Polska
Bibliografia
- [1] Kunioka M.; Doi Y.: Biodegradation of Polymers: Mechanisms and Evaluation Methods. Springer 1996.
- [2] Vert M., Doi Y., Hellwich K. H., Hess M., Hodge P., Kubisa P., Rinaudo M., Schué F.: Terminology for biorelated polymers and applications. Pure and Applied Chemistry, 2012, 84, 2, 377-410.
- [3] Rudnik E.: Compostable Polymer Materials, Elsevier 2019.
- [4] https://plasticseurope.org/pl/knowledge-hub/tworzywa-fakty-w-pigulce-2024/
- [5] Sheraz, M.; Sun, X.-F.; Siddiqui, A.; Hu, S.; Song, Z. Research Advances in Natural Polymers for Environmental Remediation. Polymers 2025, 17, 559. https://doi.org/10.3390/polym17050559.
- [6] Farah S., Anderson D. G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Advanced Drug Delivery Reviews, 2016, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012.
- [7] Tokiwa Y., Calabia B. P., Ugwu C. U., Aiba S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 9, 3722-3742; https://doi. org/10.3390/ijms10093722.
- [8] Chandra, R; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273-1335.
- [9] Stepaniak P., Fabijański M., Softić S., Woźniak S., Nowakowski K. Properties of polyethylene regranulates made from end-of-life products, Przem. Chem. 2023, 102, 5, s.473-477. DOI:10.15199/62.2023.5.5.
- [10] Fabijański M. Mechanical strength and flammability of polylactide, Przem. Chem. 2019, 98, 4, 556-558, DOI:10.15199/62.2019.4.8.
- [11] Gałęski, A.; Piórkowska, E.; Pluta, M.; Kuliński, Z.; Masirek, R. Modification of physical properties of polylactide, Polimery 2022, 50, 562-569. https://polimery.ichp.vot.pl/index.php/p/article/view/1664.
- [12] Fabijański, M. Wielokrotne przetwarzanie polilaktydu. Przem. Chem. 2016, 95, 874-876, DOI: 10.15199/62.2016.4.33.
- [13] Fabijański, M.; Gołofit, T. Influence of Processing Parameters on Mechanical Properties and Degree of Crystallization of Polylactide. Materials 2024, 17, 3584. https://doi.org/10.3390/ma17143584.
- [14] Moraczewski, K.; Malinowski, R.; Sikorska, W.; Karasiewicz, T.; Stepczyńska, M.; Jagodziński, B.; Rytlewski, P. Composting of Polylactide Containing Natural Anti-Aging Compounds of Plant Origin. Polymers 2019, 11, 1582, https://doi.org/10.3390/polym11101582.
- [15] Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. 2019, 58, 50-62, https://doi.org/10.1002/anie.201805766.
- [16] Jamshidian, M.; Tehrany, E.A.; Desobry, S. Release of synthetic phenolic antioxidants from extruded poly lactic acid (PLA) film. Food Control 2012, 28, 445-455, https://doi.org/10.1016/j.foodcont.2012.05.005.
- [17] Mysiukiewicz, O.; Barczewski, M.; Skórczewska, K.; Szulc, J.; Klozinski, A. Accelerated Weathering of Polylactide-Based Composites Filled with Linseed Cake: The Influence of Time and Oil Content within the Filler. Polymers 2019, 11, 1495, https://doi.org/10.3390/ polym11091495.
- [18] Lim, L.-T.; Auras, R.; Rubino, M. Processing technologies for poly-(lactic acid). Prog. Polym. Sci. 2008, 33, 820-852, https://doi. org/10.1016/j.progpolymsci.2008.05.004.
- [19] Fabijański M. Effect of injection parameters on the mechanical properties of foamed polylactide, Przem. Chem. 2021, 100, 8, 750-753, DOI:10.15199/62.2021.8.5.
- [20] Liao, R.; Yang, B.; Yu, W.; Zhou, C. Isothermal cold crystallization kinetics of polylactide/nucleating agents. J. Appl. Polym. Sci. 2007, 104, 310-317, https://doi.org/10.1002/app.25733.
- [21] Bajpai, P.K.; Singh, I.; Madaan, J. Development and characterization of PLA-based green composites: A review. J. Thermoplast. Compos. Mater. 2014, 27, 52-81, https://doi.org/10.1177/0892705712439.
- [22] Stepczynska, M. Influence of active compounds on the degradation of polylactide biocomposites. Polimery 2019, 64, 410-416, https://doi.org/10.14314/polimery.2019.6.3.
- [23] Garbarski J., Fabijański M. Mechanical properties of thermoplastic starch filled with calcium carbonate, Przem. Chem., 2023, 102, 8, 829-833, DOI:10.15199/62.2023.8.10.
- [24] Moraczewski, K.; Stepczyńska, M.; Malinowski, R.; Karasiewicz, T.; Jagodziński, B.; Rytlewski, P. The Effect of Accelerated Aging on Polylactide Containing Plant Extracts. Polymers 2019, 11, 575, https://doi.org/10.3390/polym11040575.
- [25] Fabijański M., Garbarski J. Strength of the thermoplastic starch/polylactide mixture, Przem. Chem. 2024, 103, 381-386, DOI: 10.15199/62.2024.3.5.
- [26] La Mantia, F.P.; Morreale, M.; Botta, L.; Mistretta, M.C.; Ceraulo, M.; Scaffaro, R. Degradation of polymer blends: A brief review. Polym. Degrad. Stab. 2017, 145, 79-92, https://doi.org/10.1016/j. polymdegradstab.2017.07.011.
- [27] Stepczyńska, M.; Rytlewski, P. Enzymatic degradation of flax-fibers reinforced polylactide. Int. Biodeterior. Biodegrad. 2018, 126, 160-166, https://doi.org/10.1016/j.ibiod.2017.11.00.
- [28] Lagazzo, A.; Moliner, C.; Bosio, B.; Botter, R.; Arato, E. Evaluation of the Mechanical and Thermal Properties Decay of PHBV/Sisal and PLA/Sisal Biocomposites at Different Recycle Steps. Polymers 2019, 11, 1477. https://doi.org/10.3390/polym11091477.
- [29] Weng, Y.X.; Wang, Y.; Wang, X.L.; Wang, Y.Z. Biodegradation behavior of PHBV films in a pilot-scale composting condition. Polym. Test. 2010, 29, 579–587, https://doi.org/10.1016/j.polymertesting.2010.04.002.
- [30] Bledzki, A.K.; Jaszkiewicz, A. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres-A comparative study to PP. Compos. Sci. Technol. 2010, 70, 1687-1696, https://doi.org/10.1016/j.compscitech.2010.06.005.
- [31] Garbarski J., Fabijański M. Strength of thermoplastic starch filled with calcium carbonate, Przem. Chem. 2024, 103, 3, 417-421, DOI: 10.15199/62.2024.3.12.
- [32] Spasówka E., Szadkowska A., Fabijański M. Effect of modified chalk on the selected properties of PLA. Inzynieria Matriałowa 2020, 41, 2, 20-23, DOI: 10.15199/28.2020.2.3.
- [33] Tryznowski, M.; Soroczyński, A. Use of biodegradable poly(lactic acid) as a binder for molding sands for foundry industry. Przem. Chem. 2020, 1, 146-149, 10.15199/62.2020.10.23.
- [34] Fabijanski, M. Mechanical Properties of Polylactide Filled with Micronized Chalcedonite. J. Compos. Sci. 2022, 6, 387. https:// doi.org/10.3390/jcs6120387.
- [35] Orue, A.; Eceiza, A.; Arbelaiz, A. Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Ind. Crops Prod. 2018, 112, 170-180, https://doi. org/10.1016/j.indcrop.2017.11.011.
- [36] Fabijański, M. Study on mechanical properties of phosphogypsum-filled polylactide. Przem. Chem. 2016, 95, 2227-2229, DOI: 10.15199/62.2016.11.15.
- [37] Haneef, I.N.H.M.; Buys, Y.F.; Shaffiar, N.M.; Shaharuddin, S.I.S.; Hamid, A.M.A.; Sabri, M.F.M.; Afifi, A.M. Effect of HNT on mechanical and thermal properties of poly (lactic acid)/polypropylene carbonate blends. Polimery 2021, 66, 459-465, https://doi. org/10.14314/polimery.2021.9.2.
- [38] He, Y.; Wu, S.; Yuen, A.C.Y.; Huang, F.; Boyer, C.; Wang, C.H.; Zhang, J. Scalable Manufacturing Process and Multifunctional Performance of Cotton Fibre-Reinforced Poly (Lactic Acid) (PLA) Bio-Composites Coated by Graphene Oxide. Polymers 2022, 14, 3946, https://doi.org/10.3390/polym14193946.
- [39] Fabijański M. Mechanical strength and flammability of polylactide, Przem. Chem. 2019, 98, 4, 556-558, DOI:10.15199/62.2019.4.8.
- [40] Żołek-Tryznowska, Z.; Bednarczyk, E.; Tryznowski, M.; Kobiela, T. A Comparative Investigation of the Surface Properties of Corn- -Starch-Microfibrillated Cellulose Composite Films. Materials 2023, 16, 3320. https://doi.org/10.3390/ma16093320.
- [41] Ishiaku U. S., Hamada H., Kohjiya S. Effects of Carbodiimide on Hydrolytic Stability of Biodegradable Polymers Polymer Degradation and Stability, 1995, 47, 2, 171-179.
- [42] Hallstein, J.; Metzsch-Zilligen, E.; Pfaendner, R. Enhancing the Hydrolytic Stability of Poly(lactic acid) Using Novel Stabilizer Combinations. Polymers 2024, 16, 506. https://doi.org/10.3390/ polym16040506.
- [43] Zaaba, NF; Jaafar, M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 2020, 60, 2061-2075, https://doi.org/10.1002/pen.25511.
- [44] Stloukal, P.; Kalendova, A.; Mattausch, H.; Laske, S.; Holzer, C.; Koutny, M. The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polym. Test. 2015, 41, 124-132, https://doi.org/10.1016/j.polymertesting.2014.10.015.
- [45] Yang, L.; Chen, X.; Jing, X. Stabilization of poly(lactic acid) by polycarbodiimide. Polym. Degrad. Stab. 2008, 93, 1923-1929, https://doi.org/10.1016/j.polymdegradstab.2008.06.016.
- [46] Kumar, M.; Gandhi, S.; Singh Kalra, S.; Singh, V.K. Efficient Ring Opening of Aziridines with Carboxylic Acids. Synth. Commun. 2008, 38, 1527-1532, https://doi.org/10.1080/00397910801928723.
- [47] Fabijański, M. Study of the Single-Screw Extrusion Process Using Polylactide. Polymers 2023, 15, 3878. https://doi.org/10.3390/ polym15193878.
- [48] https://novopak.com.pl/projekty-ue/
- [49] Patent nr PL 244616.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bf12e63-b68d-4c3d-8f2f-995baadcf5b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.