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The collapse of sequential Bayesian estimator in two-target tracking 

problem 

Abstract. Track coalescence is a phenomenon that occurs in multi-target tracking applications where 

certain types of manoeuvres performed simultaneously by several targets can utterly confuse algorithms 

that track their positions. In its simplest form, the phenomenon occurs when two similar objects, 

initially well separated, get close to each other and follow similar manoeuvres for a period of time 

sufficient to confound the tracking algorithm so that when the objects finally depart from each other the 

tracking algorithm is prone to provide erroneous estimates. This two-target track coalescence is 

discussed in this paper with the focus on the compound coalescence, when two identical tracks follow 

the midpoint of two well separated targets. First, the problem is illustrated on a classic problem of 

tracking two targets manoeuvring in a clutter, which is modeled as a nonlinear stochastic system. It is 

shown how, otherwise accurate and precise, estimates obtained by a standard particle filter eventually 

collapse leading to the coalescence of tracks. The phenomenon is given theoretical explanation by the 

analysis of Bayesian update operator acting on L2-space of probability densities that reveals that the 

coalescence is an unavoidable consequence of the probabilistic mixing between distributions describing 

positions of two targets. Finally, the practical consequences of these theoretical results are discussed 

together with potential approaches to deal with track coalescence in real applications. 
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1. Introduction 

Target tracking is a subject extensively studied in the stochastic dynamical systems theory 

and practice. The classical formulation of the problem can be found in [1], where the Kalman 

derived an optimal solution for linear and Gaussian tracking problem, which is known as 

Kalman Filter. In case of nonlinear and/or non-Gaussian tracking problems no optimal 

solution exists in a closed analytical form. Instead, one needs to rely on approximate 

solutions, which can be divided into parametric and non-parametric filters. There exists a 

plethora of algorithms in each of these group. The parametric methods are based on analytical 

approximations of nonlinear system dynamic (e.g., Extended Kalman Filter [2]), statistical 

approximations of system uncertainty (e.g., Unscented Kalman Filter [3]) or the combination 

of both (e.g., Gaussian Sum Filter [4]). An extensive survey on the subject of parametric 

filters is presented in [5]. These algorithms are, in general, simple to implement and 

computationally inexpensive, which makes them very popular in applications requiring online 

high-frequency estimates. On the other hand, the parametric methods are rather rigid and thus 

prone to approximation errors, especially in the presence of severe nonlinearities in the 

system. To deal with such situations, the non-parametric Particle Filters (PF) have been 

developed. These algorithms approximate the probability distribution function (pdf) of the 

state of the system by a large set of weighted points (particles) that, in theory, can fit a pdf of 

any arbitrary shape [6]. The PF produces better estimates but the price for accuracy is 

significantly higher computational load of the algorithm when compared to parametric 

methods.  

In this paper the properties of Bayesian estimator used to track positions of two 

manoeuvring targets in a clutter shall be discussed in the context of a phenomenon commonly 

known as track coalescence [7, 8]. This is a well-known problem in target tracking 

applications and usually occurs when two similar object, initially well separated, get close to 

each other and follow similar manoeuvres for a period of time sufficient to confuse the 

tracking algorithm so that when the objects finally depart from each other the tracking 

algorithm is prone to provide erroneous estimates. Several types of errors associated with 

track coalescence can be distinguished: misalignment, when track switch the targets they 

follow; simple coalescence, when two identical tracks follow a single target; and compound 

coalescence, when two identical tracks follow the midpoint of two well separated targets. The 

focus of this paper is to discuss only the latter phenomenon of compound track coalescence.  

To do that, first in Section 2 a classic example of targets manoeuvring in a clutter is 

defined. Next, in Section 3 a typical example of track coalescence is presented for a system 

using the standard PF. Furthermore, it is shown how, after following close trajectories for 

some time, the initially well separated distributions of targets mix to the point they become 
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indistinguishable from each other. Next, in Section 4 through analysis Bayesian update 

operator acting on L2-space of probability densities, the coalescence is presented as an 

unavoidable consequence of the probabilistic mixing between distributions describing the 

positions of two targets. Section 5 concludes the paper by discussing various approaches to 

deal with the track coalescence. 

2. Two-target tracking in a clutter problem 

In this section the two-target tracking problem is defined and some of its properties are 

discussed. For the sake of clarity, the problem is presented in a simple classic formulation 

where the relative distance between the targets is the only dimension that matters. 

Nevertheless, the properties discussed in this paper are applicable to general target tracking 

systems. 

A common approach is to model two-target tracking problem as nonlinear stochastic 

dynamic system, where the states of both targets 𝑥
 ൌ ൣ𝑥௦

 , 𝑥௩
 ൧



்
, 𝑖 ൌ 1,2, correspond to 

target position 𝑥௦ and velocity 𝑥௩ at time step k. The system equations are as follows [9]: 

𝑥
 ൌ 𝐴𝑥ିଵ

  𝑤


𝑧
 ൌ 𝐻𝑥

  𝑔𝑣
     

ሺ1aሻ
ሺ1bሻ 

where: 𝐴, 𝐻 are system matrices that model state evolution ൛𝑥௧
ൟ

௧ୀଵ


and observation 

process ൛𝑧௧
ൟ

௧ୀଵ


, respectively; ൛𝑣௧

ൟ
௧ୀଵ


is a sequence of independent identically distributed 

(i.i.d.) standard Gaussian variables that, after multiplication by a 𝑔 factor  (scalar value), 

model the observation noise; and ൛𝑤௧
ൟ

௧ୀଵ


 is a sequence of i.i.d. Gaussian variables with time-

invariant covariance matrix 

𝑊 ≔  
𝑇௦

ଷ/3 𝑇௦
ଶ/2

𝑇௦
ଶ/2 𝑇௦

൨    ሺ2ሻ 

where 𝑇௦ is the sampling time. 

For simplicity let us assume that the models for both targets are equal, i.e., that for i = 1, 2 

the matrices 𝐴, 𝐻 are given by 

𝐴 ≔  ቂ1 𝑇௦
0 1

ቃ,     ሺ3ሻ 

𝐻 ≔  ሾ1 0ሿ     ሺ4ሻ 
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and that 𝑔 ൌ 𝑔 for i = 1, 2. 

Remark 2.1 (dimensionality) Note that matrices 𝑊, 𝐴, 𝐻 describe the dynamics of 

target position and velocity so the state vector of each target can be decomposed into 𝑥
 ൌ

ൣ𝑥௦
 , 𝑥௩

 ൧


்
. The actual dimension of the vector 𝑥

  depends on a particular problem being 

modelled, e.g., if the system model airborne objects, the state position is three-dimensional; in 

case of ground vehicles moving at a at surface the state position would be two-dimensional; 

on the other hand if the modeller is concerned only with the relative position between two 

targets, the state position is one-dimensional. In general, for 𝑛௦ – the dimension of state 

position and 𝑛௩ - the dimension of state velocity, the dimensions of matrices 𝑊, 𝐴, 𝐻 are 

equal to ൫𝑛௦    𝑛௩൯ ൈ ൫𝑛௦    𝑛௩൯, ൫𝑛௦   𝑛௩൯ ൈ ൫𝑛௦    𝑛௩൯, ൫𝑛௦  

 𝑛𝑣𝑒𝑙ൈ𝑛𝑝𝑜𝑠, respectively.  

 

So far, the system dynamics for marginal targets is linear. The dynamical system for the 

joined two-targets state 𝑥 ൌ ሾ𝑥
ଵ, 𝑥

ଶሿ
் and the joined observation 𝑧 ൌ ሾ𝑧

ଵ, 𝑧
ଶሿ

் is then given 

by 

𝑥 ൌ 
𝐴ଵ 0
0 𝐴ଶ

൨ 𝑥ିଵ  ቈ
𝑤

ଵ

𝑤
ଶ ,

𝑧 ൌ 
𝐻ଵ 0
0 𝐻ଶ

൨ 𝑥  
𝑔 0
0 𝑔൨ ቈ

𝑣
ଵ

𝑣
ଶ .

   
ሺ5ሻ
ሺ6ሻ 

 

At each time step k we collect the measurement vector 𝑦 ൌ ሾ𝑦
ଵ, 𝑦

ଶሿ் however without 

knowing from which target 𝑦
ଵ and 𝑦

ଶ originate. However, we know that the measurement 

vector 𝑦 is related to the state system by 

𝜒𝑦 ൌ  𝑧,      ሺ7ሻ 

where 𝜒 ∶ൌ 𝜒⨂𝐼, with ሼ𝜒௧ሽ௧ୀଵ
  is a sequence of i.i.d. random 2 ൈ 2 permutations so that 

𝜒 takes values I or Π, which are defined as: 

𝐼 ൌ ቂ1 0
0 1

ቃ ,

Π ൌ ቂ0 1
1 0

ቃ .
    

ሺ8ሻ
ሺ9ሻ 
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The data association uncertainty defined by (7) introduces nonlinearity to the otherwise 

linear model. The conditional probability distribution 𝑝௫ೖ|௬ೖ
 of the state 𝑥 given the 

measurements 𝑦 is given by [9]: 

𝑝௫ೖ|௬ೖ
ሺ𝑥ሻ ൌ  ଵ

ೖ
∑ 𝑁 ቀ𝜒𝑦; 𝐻෩𝑥, 𝐺෨𝐺෨்ቁ  𝑁൫𝑥; 𝐴ሚ𝑥′, 𝑊෩ ൯𝑝௫ೖషభ|௬ೖషభ

ሺ𝑥′ሻ𝑑𝑥′ℝమఞ∈ሼூ,ஈሽ ,              

ሺ10ሻ 

where 𝑐 is a normalizing constant, 𝑛 ൌ  𝑛௦   𝑛௩ is the dimension of the state vector 

(composed position and velocity of the target), and 

𝐴ሚ ≔  ቂ𝐴 0
0 𝐴

ቃ,     ሺ11ሻ 

𝐻෩ ≔  ቂ𝐻 0
0 𝐻

ቃ,     ሺ12ሻ 

𝐺෨ ≔  
𝑔 0
0 𝑔൨,     ሺ13ሻ 

𝑊෩ ≔  ቂ𝑊 0
0 𝑊

ቃ.    ሺ14ሻ 

The objective of two-target tracking problem is to estimate the posterior density (10) 

given the initial a priori distribution 𝑝 and consecutive measurements 𝑦. 

3. Track coalescence phenomenon 

In this section a typical example used to illustrate the phenomenon of track coalescence is 

discussed. This example consists of two targets, which manoeuvre according to the dynamics 

described in Section 2, and that are followed by tracking algorithm estimating target positions 

from noisy measurements. In this example only the relative distance between the targets is of 

importance, hence the state position of both targets is one-dimensional. The tactical 

manoeuvres of both targets are planned in three stages: 

The systems is initiated with two well-separated targets that start moving towards each 

other (stage 1: separation). During this phase, the tracking algorithm follows both targets with 

desired accuracy and precision. 

After the targets get sufficiently close, they maintain a fixed distance from each other 

while moving with equal velocity on parallel trajectories (stage 2: mixing). During the second 

phase the tracking algorithm becomes increasingly less accurate and precise. Typically, the 
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estimated positions of both targets are located somewhere between their true positions. 

Nevertheless, as targets are close to each other, the estimation bias is not significant. 

Finally, after enough time has passed to allow strong mixing of posterior distributions, 

both targets depart from each other (stage 3: coalescence). In this phase the tracking algorithm 

is completely confused about the location of both targets, with fifty-fifty chances of assigning 

to each of them. In a typical situation, as the tracking algorithm cannot decide which target to 

follow, the track is stuck half way between both targets, which leads to a significant 

estimation bias. Such situation might prevail for a long time after the departure happened but 

typically as the time passes the estimation bias diminishes as the tracking algorithm catches 

the trail of escaping targets. Unfortunately, this can be a very slow process and there is half-

half probability that the algorithm assigns tracks to wrong targets. 

The situation described above is visualised by simulations inspired by [9], which are 

presented in Figure 3.1, the trajectories of two targets are presented together with noisy 

measurements of their relative positions. The relative distances between the targets are 

rescaled so that their initial positions are 1 and -1, respectively. In this scale, the noise of the 

measurements is equal to g = 0.06. 

 

 

Figure 3.1. Two-targets tracking system. The solid lines represent the trajectories of both targets while the stars 
represent noisy measurements associated with them. 

 

The simulation starts with the targets being well-separated (stage 1) in the eyes of the 

tracking algorithm, i.e., the prior probabilities of target positions are described by Gaussian 

distribution with standard deviation 𝜎 ൌ 0.06 and means equal to 1 and -1, respectively. At 

time step 10, after the distance between the targets is reduced to 0.1 (5% of the initial 

distance), the mixing phase (stage 2) of the simulation begins. This phase lasts until time step 

30 when the targets separate (stage 3) to return to their initial relative distance. 
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Given that the system described above is nonlinear, a nonlinear nonparametric tracking 

algorithm, namely Sample Importance Resampling Particle Filter [10] (SIR PF), is used to 

estimate its states. 

The SIR PF is a nonlinear filtering algorithm used to estimate the states of discrete-time 

dynamical systems, such as the one defined by (1). The SIR PF approximates the posterior 

density 𝑝| of the state 𝑥 by N random samples (particles) ൛𝑥,ൟ
ୀଵ

ே
 and their corresponding 

weights ൛𝜔,ൟ
ୀଵ

ே
, which are normalized to sum to unity. The particles are obtained using the 

Sequential Importance Sampling (SIS) method [6,11], which is a recursive algorithm that uses 

the most recent observation 𝑦 to compute the distribution of the state 𝑥 via Bayes rule. The 

posterior density 𝑝| is represented by the set of weighted samples in the following way: 

𝑝| ൎ 𝑝|
ே ≔  ∑ 𝜔,𝛿ሺ𝑥 െ 𝑥,ሻே

ୀଵ ,   ሺ15ሻ 

where 𝛿 denotes the Dirac delta at zero. Over the last years, PFs have gained much 

popularity in the nonlinear filtering community because their flexibility allows them to be 

applied to large variety of systems. In this paper the most basic SIR PF is used, which is also 

known as Bootstrap Particle Filter [12]. The reader interested in more specialised 

modification of the basic SIR PF is referred to [10, 13, 14, 15]. 

   

   

 

Figure 3.2. Four random realizations of the SIR PF tracking. Depending on a particular random realization of 
measurement noises the tracks: follow the targets correctly (top left), swap targets (top right), collapse at the mid-
point (bottom left), collapse and swap targets (bottom right). 

Using the SIR PF to track targets following manouvres described in Figure 3.1 results in 

typical track coalescence during the last third stage of the simulations. This can be seen in 

Figure 3.2 where four random realizations of the tracking algorithm are shown (each for 

particular random realization of measurement noises). 
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Note that the track coalescence is not due to a choice of the point estimate (MMSE in case 

of Figure 3.2) nor due to a particular choice of the tracking algorithm (SIR PF in case of 

Figure 3.2) but it is a consequence of the shape of the posterior distribution. Detailed 

discussion on this subject is given in the next section, but the phenomenon is visualised in 

Figure 3.3 and Figure 3.4, which show the evolution of posterior distributions of target 1 and 

target 2, respectively. 

     

     

     

 

Figure 3.3. The evolution of the posterior distribution of the position of target 1 obtained with the SIR PF. Top 
row shows how the posterior distribution evolves during the separation stage, the evolution during the mixing stage is 
presented in middle row, and the evolution of the distribution during the coalescence stage is presented in the bottom 
row. 

It can be seen that at the beginning of the simulation the probability distributions of both 

targets are centered around their respective positions, and thus well-separated. During the 

mixing phase, the posterior distribution of both targets converge to each other and center 

around the symmetry axis between the targets (position 0), while simultaneously the variance 

of the distribution increases. During the last phase the posterior distributions of both targets 

remain similar, by each becoming binomial with modes centered around the positions of 

distant targets. Thus, the posterior distributions are confused about the true locations of both 

targets and the choice of point estimate cannot prevent the coalescence of tracks. 
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Figure 3.4. The evolution of the posterior distribution of the position of target 2 obtained with the SIR PF. Top 
row shows how the posterior distribution evolves during the separation stage, the evolution during the mixing stage is 
presented in middle row, and the evolution of the distribution during the coalescence stage is presented in the bottom 
row. 

4. The source of track coalescence: collapse of Bayesian update operator 

In this section the track coalescence phenomenon described in the previous section is 

shown to be a consequence of the full mixing of the state distribution obtained by sequential 

application of the Bayesian update. This is done by analyzing the Bayesian operator acting on 

L2 space of probability densities defined below. 

Definition 4.1 (Bayesian update operator [13]) Let us denote the transformation that 

takes 𝑝௫ೖషభ|௬ೖషభ
into 𝑝௫ೖ|௬ೖ

 defined in (10) by ℬ, i.e.,  

ℬ௬ೖ
൫𝑝௫ೖషభ|௬ೖషభ

൯ ≔ 𝑝௫ೖ|௬ೖ
.  ሺ16ሻ 

The first observation about the operator defined by (16) is that it maps a Gaussian prior 

distribution into a Gaussian-sum posterior distribution. This is formulated formally in 

Proposition 4.1 below. 

Proposition 4.1 Assume that 𝑝 is a Gaussian distribution defined by  

𝑝ሺ𝑥ሻ ≔ 𝑁൫𝑥; 𝜇, Σ෨൯.   ሺ17ሻ 
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then, the result of applying the Bayesian update operator defined in (10) to 𝑝 and to the 

measurement 𝑦 ൌ ሾ𝑦ଵ, 𝑦ଶሿ், is a Gaussian-sum distribution. 

Proof The proof follows from simple algebra and basic properties of Gaussian 

distribution. Indeed, after Bayesian update the posterior density is given by: 

ℬ௬ሺ𝑝ሻሺ𝑥ሻ ൌ  
1
𝑐

ቀ𝑁൫𝑦; 𝐻෩𝑥, 𝐺෨൯   𝑁൫Π𝑦; 𝐻෩𝑥, 𝐺෨൯ቁ න 𝑁൫𝑥; 𝐴ሚ𝑥ᇱ, 𝑊෩ ൯𝑝ሺ𝑥ᇱሻ𝑑𝑥ᇱ

ℝమ
 

ൌ
ଵ


ቀ𝑁൫𝐻෩𝑥; 𝑦, 𝐺෨൯𝑁൫𝑥; 𝐴ሚ𝜇, 𝐴ሚΣ෨𝐴ሚ்  𝑊෩ ൯  𝑁൫𝐻෩𝑥; Π𝑦, 𝐺෨൯𝑁൫𝑥; 𝐴ሚ𝜇, 𝐴ሚΣ෨𝐴ሚ்  𝑊෩ ൯ቁ . 

To complete the proof it is enough to observe that the product of two Gaussian densities is 

also a Gaussian density. Thus, the posterior becomes a binomial Gaussian-sum density.  

                      ∎ 

Directly from Proposition 4.1 the following invariance property can be inferred. 

Corollary 4.1 The Bayesian update operator defined in (10) is an invariant operator on the 

sub-space of L2 composed of Gaussian-sum densities. 

Proof The proof of Corollary 4.1 follows by Proposition 4.1 and the fact that Bayesian 

update operator is linear on L2.     ∎ 

The second observation about the operator defined by (16) is that it maps a symmetric 

Gaussian-sum prior distribution into a symmetric Gaussian sum posterior distribution. More 

precisely, for the Bayesian update operator the following holds. 

Proposition 4.2 Let us define the set of symmetric Gaussian-sum densities by: 

ℳ ≔ ቄ∑ ൬
ଵ

ଶே
𝑁൫𝑥; 𝜇, Σ൯  ଵ

ଶே
𝑁൫𝑥; Π𝜇, Σ൯൰ே

ୀଵ : 𝜇, Σ, 𝑁ቅ  ሺ18ሻ 

with 𝜇 ∈ ℝଶ, symmetric matrices Σ of dimension 2𝑛 ൈ 2𝑛, and numbers 𝑁 ∈ ℕ. Then, 

for any measurement vector 𝑦 ∈ ℝଶ, and state vector 𝑥 ∈ ℝଶ, the set ℳ is invariant with 

respect to the operator ℬ௬ሺ∙ሻ, i.e., 

ℬ௬ሺℳሻ ⊂ ℳ.    ሺ19ሻ 

Proof To prove Proposition 4.2 it is enough to show that the Bayesian update operator 

maps a symmetric binomial Gaussian-sum prior density into a symmetric Gaussian-sum 

posterior density. Thus, let the prior density 𝑝 be defined as follows:     
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𝑝 ≔  ଵ

ଶே
𝑁൫𝑥; 𝜇, Σ෨൯  ଵ

ଶே
𝑁൫𝑥; Π𝜇, Σ෨൯,   ሺ20ሻ 

where the means and covariances of the Gaussian densities are given by 𝜇 ൌ ሾ𝜇ଵ, 𝜇ଶሿ் and 

Σ෨ ൌ  𝐴Σ𝐴்  𝑊 0
0 𝐴Σ𝐴்  𝑊

൨, respectively. Then, for any measurement vector 𝑦 ൌ

ሾ𝑦ଵ, 𝑦ଶሿ் and two-target state vector 𝑥 ൌ ሾ𝑥ଵ, 𝑥ଶሿ், and covariance matrix 

Λ ൌ  𝐴ሚΣ෨𝐴ሚ்  𝑊෩ 0
0 𝐴ሚΣ෨𝐴ሚ்  𝑊෩

൨, the posterior density is given by: 

ℬ௬ሺ𝑝ሻሺ𝑥ሻ ൌ 1

𝑐
൫𝑁ሺ𝑦; 𝐻𝑥, 𝐺ሻ   𝑁ሺΠ𝑦; 𝐻𝑥, 𝐺ሻ൯  𝑁ሺ𝑥; 𝐴𝑥′, 𝑊ሻ𝑝0

ሺ𝑥′ሻ𝑑𝑥′
ℝ2𝑛 ൎ  𝑁ሺ𝐻𝑥, 𝑦, 𝐺ሻ𝑁ሺ𝑥; 𝐴𝜇, Λሻ 

 ሺ21𝑎ሻ 

𝑁൫𝐻෩𝑥, 𝑦, 𝐺෨൯𝑁൫𝑥; Π𝐴ሚ𝜇, Λ൯   ሺ21𝑏ሻ 

𝑁൫𝐻෩𝑥, Π𝑦, 𝐺෨൯𝑁൫𝑥; 𝐴ሚ𝜇, Λ൯  ሺ21𝑐ሻ 

𝑁൫𝐻෩𝑥, Π𝑦, 𝐺෨൯𝑁൫𝑥; Π𝐴ሚ𝜇, Λ൯, ሺ21𝑑ሻ 

where ‘ൎ’ means equality up to a normalizing constant. 

By the previously recalled properties of Gaussian distribution, the resulting posterior 

density belongs to a class of Gaussian-sum densities. Furthermore, the structure of the 

posterior density is such that: 

the covariance matrices are symmetric and diagonal (between targets 𝑥ଵ and 𝑥ଶ), 

the means in term (21a) are symmetric to means in term (21d), 

the means in term (21b) are symmetric to means in term (21c). 

Thus, from points 1.-3. it follows that the posterior density ℬ௬ሺ𝑝ሻ is a symmetric 

Gaussian-sum density with four components. Hence, the operator (16) maps symmetric 

binomial Gaussian densities into ℳ. To finish the proof it is enough to observe that any 

function 𝑝 ∈ ℳ is composed of several symmetric binomial Gaussians 𝑝 and that the 

operator ℬ௬ሺ∙ሻ is additive. Thus 

ℬ௬ሺ𝑝ሻ ൌ ℬ௬ሺ∑ 𝑝 ሻ ൌ ଵ


∑ ℬ௬ሺ𝑝ሻ ∈ ℳ   ሺ22ሻ 

where c is a normalizing constant.                    ∎ 

So far, the discussion was focused on properties of Bayesian operator that dynamically 

maps prior distribution into posterior distribution. However, in typical tracking applications 
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one is eventually interested in obtaining a point estimate of target position. This value can be 

derived from the posterior distribution by applying a point estimator to the posterior pdf. The 

most common point estimators are those that solve either of the following optimization 

problem:  

minimize the mean square error between the posterior pdf and the true unknown state; 

maximize the likelihood of the posterior pdf. 

The solution to the former optimization problem, the Minimal Mean Square Error 

(MMSE) estimator is provided by an expected value, whereas the solution to the latter 

problem, the Maximum A Posteriori Probability (MAP) estimator is given by mode of the 

posterior pdf [5]. In the reminder of this section it is discussed how these two point estimators 

behave when applied to densities belonging to the invariant set ℳ.  

Corollary 4.2 For any prior symmetric Gaussian-sum density 𝑝 ∈ ℳ the MMSE 

estimator applied to the Bayesian posterior ℬ௬ሺ𝑝ሻሺ∙ሻ will always lead to a perfect 

coalescence of target tracks. 

Proof To prove Corollary 4.2 it is sufficient to note that 

the MMSE estimator is given by the expectation of the posterior distribution, 

the expectation of the distribution defined by (4) is symmetric, i.e  

ℇሺ𝑥ଵሻ ൌ  𝑥ଵ ℬ௬ሺ𝑝ሻሺ𝑥ଵሻ𝑑𝑥ଵ ൌ  𝑥ଶ ℬ௬ሺ𝑝ሻሺ𝑥ଶሻ𝑑𝑥ଶ ൌ ℇሺ𝑥ଶሻ,          ሺ23ሻ 

where ℇሺ𝑥ଵሻ denotes expected value of the variable 𝑥ଵ.   ∎ 

Thus, it has been shown that the track coalescence of the two-targets tracking system 

based on MMSE estimator is a consequence of the persistent symmetry existing in the system 

from the moment it enters the subspace ℳ. 

Corollary 4.3 For any prior symmetric Gaussian-sum density 𝑝 ∈ ℳ the MAP estimator 

applied to the Bayesian posterior ℬ௬ሺ𝑝ሻሺ∙ሻ will always lead to track coalescence or to 

random misalignment of tracks. 

Proof The corollary is again a consequence of the persistent symmetry existing in the 

system. The coalescence of MAP estimates happens when the a posteriori Gaussian-sum 

density has its mass centred around symmetry axis (0, 0), whereas the random misalignment 



 

The collapse of sequential Bayesian estimator in two-target tracking problem 43 

of the MAP estimates occur when the a posteriori Gaussian-sum density resembles the 

binomial distribution with mass divided equally among the position of both targets.  ∎ 

5. Discussion 

In the previous sections it has been shown that if two targets stay sufficiently close and for 

sufficiently long period of time the joint tracking distribution of both targets become 

symmetric. As a consequence, both targets become indistinguishable from each other. 

Furthermore, once the state of symmetry is achieved it persists even if after some time both 

targets depart far away from each other. The final point estimates of targets positions, such as 

those obtained from MMSE or MAP statistics, are derived from the joint posterior 

distribution. Due to inherent symmetry of the underlying distribution, such estimates result in 

track coalescence if the mean value of the distribution is taken (MMSE estimator) or to either 

coalescence or random alignment of tracks when maximum likelihood estimators are used 

(MAP estimator). 

In the theoretical case of ideally symmetrical prior distribution it is impossible to escape 

the symmetry following the sequential Bayesian estimation only, nor it is possible to avoid 

track coalescence or track misalignment by construction of other specialized point estimates. 

In the real applications the perfect symmetry is never achieved. Instead, after long enough 

mixing, the joint distribution of target states is composed of dominant symmetric part and 

residual asymmetric part. The former component preserves its symmetry accordingly to the 

theory described in previous section. During the mixing stage of the process, the latter 

asymmetric component acts similarly to a random walk with covariances defined by noises of 

the system (1), i.e., by covariance matrices W and G. After the mixing stage is over, i.e., after 

the targets depart from each other, the asymmetric component will eventually become 

dominant over its symmetric counterpart, which in consequence will lead to breaking of the 

symmetry of the posterior distribution. Unfortunately, this can be very slow process due to the 

fact that realizations of random walk can oscillate around the symmetry axis for a long time. 

Furthermore, due to randomness of the asymmetric component, there is no guarantee that 

after the symmetry is broken, the tracks will follow correct targets. In reality, when the 

symmetry is finally broken there is fifty-fifty chance of misalignment of target tracks. For 

other algorithms that exploit the asymmetric component in the tracking algorithms the reader 

is referred to [8, 9,16,17]. 

When considering the choice of the point estimates it is important to note that the MMSE 

estimate is more prone to track coalescence than the MAP estimate. This is because it takes a 

lot of time for the asymmetric component to shift the expectation of the posterior distribution 

to the place where it matches the actual positions of the targets. The MAP estimate is 
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immediately affected by the asymmetry as it follows the track with even slightly larger 

probability mass. On the other side, the MMSE estimate is more stable in target tracking, 

whereas the MAP estimate frequently jumps from one target to another as the asymmetric 

component randomly oscillates around the symmetry axis. Regardless of the choice of point 

estimates, the misalignment of target tracks cannot be effectively avoided as it is a 

consequence of the previously described collapse of sequential Bayesian operator. 
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