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INTRODUCTION

Hardness, defined as the ability of a mate-
rial to resist deformation, is one of the most im-
portant materials’ properties. Its value is associ-
ated with abrasion wear resistance or cavitation 
erosion resistance [1, 2]. Moreover, correlation 
between hardness and tensile strength was also 
proven [3, 4].

For measuring materials’ hardness, different 
methods are used, depending on properties of test-
ed material, or required results of the test. For me-
tallic materials, Vickers method is often applied 
due to its universality as this method can be used 
for versatile materials and covers wide hardness 

range. In this method, a diamond intender with a 
shape of square-based pyramid is pressed against 
the surface of tested specimen with a certain load. 
The value of a load depends on expected proper-
ties of tested material. Hardness of tested speci-
men is based on length of diagonal of the mark 
left in material. The whole procedure is precisely 
described in ISO 6507 standard [5]. Hardness can 
also be determined with scratching tests, for ex-
ample the Bierbaum scratch test or Mohs hard-
ness test, or by measuring recovery efficiency or 
resilience, such as Rockwell test [6].

Application of computational methods in 
engineering and material science constantly 
increases. Majority of works are considering 
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application of computational methods for analyz-
ing, designing, simulating, or controlling physical 
phenomena [7, 8]. Computational methods such 
as machine learning algorithms were successfully 
applied to material science, both to design and ex-
amine materials structure [9, 10]. In [11] authors 
presented an interesting attempt in using artificial 
intelligence techniques to characterize the micro-
structure of a Ni-based alloy base on ultrasound 
signals. Bayesian approach was also presented by 
Jung et al. [12] and adapted to predict mechanical 
properties of dual-phase steels in [13].

Computer vision methods can be divided into 
two broad categories: those based on digital im-
age processing techniques together with statistical 
methods and those based on deep learning mod-
els, often utilizing end to end training procedures. 
First category usually consists of two steps: fea-
ture extraction, which quantifies information in 
digital image into numerical values and statistical 
algorithm, estimating desired target values based 
on those features. Such methods have been suc-
cessfully applied in material science [14, 15], in-
cluding hardness estimation from microstructure 
images [16, 17].

Robust statistics is used for problems with 
high presence of noise, to reduce its influence 
on estimated quantities. Even in case of carbon 
steels, the influence of alloying elements, espe-
cially manganese, on materials hardness is non-
negligible. In such case robustness of statistical 
tools is essential for meaningful predictions. The 
field of robust statistics contains numerous meth-
ods for outlier-robust regression [18, 19], and the-
ory suggests that learning algorithms with smaller 
number of variables are preferred, since they have 
smaller statistical variance, which in turn results 
in smaller influence of the noise in the dataset.

In this paper, we propose fractal dimension as 
robust method of hardness estimation of low car-
bon steels. Fractal dimension is a mathematical 
concept used for quantifying self-similarity and 
complexity of spatial patterns [20]. This leads to a 
hypothesis that it should provide a robust estimate 
of material hardness, based on the microstructure 
image, since in a single number it quantifies the 
complexity and space-filling properties of the 
considered image. Fractal dimension has been 

successfully used in problems from the domain 
of computer vision, for example facial recogni-
tion [21] and many others [22]. Fractal analysis 
is already broadly used in material science and 
its main fields of application include geometrical 
characteristics of the surface, grain size and mate-
rials porosity [23–25]. Moreover, some attempts 
for implementation of fractal dimension in micro-
structure analysis were also made [26]. In [27], 
a direct correlation between fractal dimension of 
fracture surface and fatigue loading was success-
fully established.

DATA ACQUISITION

Materials

The following research was focused on low-
carbon structural steels, due to their wide spectrum 
of industrial applications and low content of al-
loying elements. According to [28] standard, low-
carbon steel should contain no more than 0.3 wt% 
of carbon. Its structure is nonhomogeneous and 
contains primarily ferrite with fractions of pearl-
ite. For this purpose, low-carbon S235JR (accord-
ing to standard [29]) structural steel, was chosen. 
S235JR is widely used in industrial applications 
mainly because of its excellent weldability and 
machineability. Its applications include industrial 
pipes or civil engineering [30]. Chemical compo-
sition of S235JR steel is presented in Table 1 in 
accordance with [31] standard. Due to impact of 
delivery conditions on materials’ properties, au-
thors decided to examine chosen material in two 
condition states: hot-rolled and normalized.

Sample preparation and 
measurement process

Each sample was grinded and polished us-
ing diamond suspension. Etching was performed 
using 3% Nital solution [32]. Images of the mi-
crostructure were taken using optical microscope 
Keyence VX6000. The magnification was equal 
to 400x. All images were divided into four sec-
tions of equal size and for each section, one hard-
ness measurement was taken, as presented in 

Table 1. Chemical composition of S235JR steel according to EN 10025 standard, wt% [31].

C Mn P S N Cu Fe

0.17 1.40 0.035 0.035 0.12 0.55 Balance
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Figure 1. Hardness was measured using Vickers 
Test method, in accordance with [5] standard, 
with a maximum test force equal to 9.81 N (HV1).

Measurements results

As a result of microscopic observations, a 
dataset of 288 microstructure images was cre-
ated with 1139 corresponding measurements. The 
number of measurements is slightly lower than 
1152, since some of them had to be removed due 
to errors that occurred during Vickers hardness 
test. Microscopic observations showed that mi-
crostructure of all examined samples corresponds 
with presumed requirements. No infl uential de-
fects were noticed. Exemplary images of micro-
structure are shown in Figure 2. Visibly textured 
pearlite fractions of hot-rolled steel in compari-
son with normalized one are a result of its de-
livery condition. Average measured hardness of 

normalized S235JR steel was 136 HV1 with a 
standard deviation of 9.9 HV1, while hot-rolled 
one exhibits slightly higher average value (139 
HV1 ± 7.1 HV1) what is also related to its de-
livery conditions. Hardness values distribution is 
shown in Figure 3. Total number of measurements 
of normalized and rolled S235JR steel were 495 
and 644 respectively.

Sampling

Each material sample consists of four inde-
pendent measurements, each with a correspond-
ing region of the image, as presented in Figure 1. 
Signifi cantly outlying measurements from the 
dataset were removed, by computing maximal 
distance from the mean, inside a single materi-
al sample, with a cut-off  value of 15 HV1. The 
formula for computing this deviation in given in 
Equation 1, where �̅�𝑥  denotes the mean value of all 

Figure 1: Representation of microstructure image with hardness measurements marks visualised.

Figure 2: Exemplary images of diff erent textures presented by S235JR steel: a) texture pattern is slightly 
visible due to normalization; b) demonstrably textured microstructure as a result of hot-rolling process.
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measurements corresponding to a single sample. 
Dataset was further split into the train and test, 
with ratio of 70 to 30%. To prevent information 
leakage into the test dataset, we draw entire sam-
ples, with four measurements and images into the 
test set, however we do not account for the steel 
type. This results in train dataset with 399 hot-
rolled samples and 203 normalized samples and 
a test dataset with 140 hot-rolled samples ad 116 
normalized samples.

max(|𝑥𝑥 − �̅�𝑥|) (1)

HARDNESS ESTIMATION METHODS

A set of three methods of hardness estimation 
is proposed with varying number of parameters: 
Otsu-based index, fractal dimension index and 
vision transformer index. Otsu-based index and 
fractal dimension index are based on image pro-
cessing methods and linear regression, both hav-
ing a small number of trainable parameters, while 
vision transformer index is a deep learning meth-
od, which utilizes transfer learning paradigm [33] 
to generate abstract numerical representation of 
each image, which is passed to a shallow neural 
network. This method has signifi cantly greater 
number of trainable parameters than Otsu-based 
index and fractal dimension index.

Otsu-based index

Otsu based index is a method using auto-
matic image thresholding to extract features 
from the microstructure image [34]. Firstly, 

image is converted to grayscale since Otsu’s 
method only works with single channel im-
ages. Then it is converted to binary image us-
ing estimated Otsu threshold. This binary rep-
resentation is converted to numerical features 
by simply counting the ratio of dark and bright 
pixels, which results in two values represent-
ing each image. Those values are then passed 
to linear regression model, used as the estimate 
of hardness.

Vision transformer index

Vision transformer index, as a method pro-
posed in this study uses transfer learning (for 
a vision transformer deep learning model) to 
estimate hardness of microstructure images. 
Transfer learning is a technique commonly 
used in machine learning, particularly often 
with deep learning models with a high number 
of parameters. Those models are trained on 
one task, but their parameters are next trans-
ferred to a different task, usually changing 
last few layers of the neural network. Those 
steps are commonly called pre-training and 
fine-tuning. Usually, during fine-tuning most 
of the parameters are frozen, which makes the 
computation of gradient required to train the 
model easier. This approach is possible, due to 
high representational abilities of large neural 
networks, which are able to generate abstract 
representations of input data and it has been 
successfully used in numerous settings, in-
cluding computer vision [35, 36] and natural 
language processing [37].

Vision transformer is a deep learning mod-
el designed for image processing [38], which 

Figure 3: Comparison of hardness values distribution of S235JR steel at diff erent delivery conditio
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modifi es transformer architecture [39] originally 
designed for natural language processing, to 
process images. It is particularly well-suited for 
transfer learning. For the purpose of this experi-
ment other deep learning models were used as 
basis for hardness estimation, including ResNet 
family [40], but vision transformer model 
achieved best performance, hence this method 
was pre-selected for further studies and called 
vision transformer index. In this case model was 
trained on large dataset for image classifi cation, 
called ImageNet 21k [41], models pre-trained on 
diff erent datasets are also available.

Vision transformer index computation con-
sists of two neural networks (although they can 
be conceptually treated as one). Firstly, image 
is converted to an abstract numerical representa-
tion, called embedding, which is processed by 
another, shallow network to predict hardness of 
the corresponding input image. This is described 
by formulae from Equation 2 and Equation 3, 
where H denotes hidden vector of representa-
tion generated by vision transformer, with 768 
dimensions and ℎ̂  denotes estimated hardness. 
VIT and NN denote vision transformer and fully 
trainable neural network respectively.

𝐻𝐻 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥) (2)

ℎ̂ = 𝑁𝑁𝑁𝑁(𝐻𝐻) (3)

Fractal dimension index

The concept of fractal dimension was intro-
duced by B. Mandelbrot [20] as a generalization 
of the integer dimensionality of space/object. In-
formally, integer dimensions have a property, that 
when an object is scaled by a coeffi  cient, denoted 
as 1/r, its measure would change, following for-
mula given by Equation 4.

𝑁𝑁 = 𝑟𝑟𝐷𝐷 (4)

where: D is this object’s dimension. 

This leads to a generalization, for irregular 
objects, diff erent than straight lines or planes, to 
non-integer dimension. After transforming for-
mula from Equation 4, the fractal dimension can 
be derived as follows in Equation 5.

𝐷𝐷 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁)
log(𝑟𝑟)  (5)

This value can be assigned to any shape, in-
cluding images, after they are converted to binary 
form. All possible binary images, except those 
with only single value, would have a fractal di-
mension between 1 and 2. To compute fractal 
dimension index, image is converted to binary, 
using Canny edge fi lter [42]. Later fractal dimen-
sion is computed using box-counting dimension, 
also called Minkowski – Bouligand dimension 
[43]. The formula for computing box-counting 
dimension is given by Equation 6.

𝐷𝐷𝐵𝐵𝐵𝐵 = lim
𝑟𝑟→0

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑟𝑟)
log(1/𝑟𝑟) + 2 (6)

Box-counting in images is implemented by 
counting the number of dark pixels covered by 
boxes of increasing size, starting from box with 
size of a single pixel. Using formula from Equa-
tion 6 the dimension is estimated as a slope of 
computed values, using numerical method of fi t-
ting slope coeffi  cient to linear equation based on 
computed box counts. This dimension is com-
puted for all images and its values are passed 
to a linear regression model, which learns the 
relation between them and measured hardness. 
Figure 4 and Figure 5 show processed micro-
structures, with highest and lowest values of 
fractal dimension in the training dataset of 1.84 
and 1.71 respectively. Computed hardness val-
ues using the fi tted linear regression were equal 
to 144 HV1 and 129 HV1.

Figure 4: Processed microstructure with 
computed fractal dimension of 1.84.
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EVALUATION METRICS

Reported metrics are Mean Absolute Er-
ror (MAE), Median Absolute Error (MDE) and 
Standard Deviation of model predictions (STD). 
Additionally, we include a number of learnable 
parameters of the predicting models (#P). This 
value does not include tuneable hyperparameters, 
for example the standard deviation of the Gauss-
ian fi lter used in Canny detector of fractal di-
mension index. Those metrics are selected, since 
they are most suitable to evaluate problems with 
high amount of noise in the dataset. Often con-
sidered factor R2 is not included, since hardness 
distribution has relatively small standard devia-
tion, which causes the values of this metric to be 
uninformative.

Experiments

All models described in Section 3 were evalu-
ated on the test set of microstructure images and 
hardness measurements. Only the best results 
from each model are reported, since numerous 
runs were conducted for each of them with vary-
ing hyperparameters. Additionally, baseline mod-
el and linear regression model based on 2-point 
correlation and principal component analysis is 

included for comparison, following the imple-
mentation described by Nikhil et.al [16], further 
called simply 2-point correlation. Baseline model 
is not learnable, and simply returns mean hard-
ness of training set for all images. All models 
were trained using transformed values of hard-
ness, using mean substitution and division by the 
standard deviation. Reported metrics are comput-
ed using inversely transformed predictions, back 
to the original measured range.

RESULTS

Table 2 shows metrics evaluated for diff erent 
models. Fractal dimension index has smallest er-
rors, both in terms of mean and median. For mean 
baseline the number of parameters (#P), is equal 
to 1, since it only stores the mean hardness of the 
training set. For Otsu-based index, fractal dimen-
sion index and 2-point correlation, #P’s are the 
numbers of learnable parameters in linear regres-
sion. Finally, for a vision transformer index, #P is 
the number of all learnable parameters of the pre-
dicting part of the model. Results are discussed in 
Conclusions section.

Fractal dimension index analysis

One of the hyperparameters of fractal dimen-
sion index method is standard deviation of Gauss-
ian fi lter used in Canny detector. It has signifi cant 
infl uence on computation of the fractal dimension 
and leads to changes in performance of the mod-
el. Figure 6 shows the dependency of this value 
on median absolute error. All further results are 
using the optimal found value, equal to 0.8.

In statistical modelling, it is sometimes useful 
to generate new features for the model to make 
it learn more complex dependencies. In case of 
fractal dimension index, regression model has 
just one input variable, so it could be benefi cial to 
create more features. This is achieved by generat-
ing higher powers of the fractal dimensions, up 

Figure 5: Processed microstructure with 
computed fractal dimension of 1.71.

Ta ble 2: Metrics evaluated for diff erent models

Method #P MAE MDE STD
Mean baseline 1 6.44 5.36 0.00
Otsu-based index 3 5.64 4.49 3.20
Fractal dimension index 2 5.16 4.12 3.83
2-point correlation 21 5.73 4.90 2.90
Vision transformer index 30801 5.74 5.07 5.65
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to tenth. The results are presented in Figure 7. No 
signifi cant benefi t was observed for dataset used 
in the experiment. For non-optimal values of sig-
ma, diff erent than 0.8, it is possible to observe im-
provement by adding those higher order powers 
of fractal dimension, however no model achieved 
better performance than using just the fi rst power 
of fractal dimension, when it was computed using 
optimal sigma value in the Canny fi lter.

Additionally diff erent downstream models 
were evaluated, other than linear regression. The 
results are presented in Table 3. No improvement 
over the linear regression-based index was ob-
served, which supports the hypothesis, that da-
taset used in the experiment requires robust ap-
proach, with low statistical variance. Evaluated 
models, other than linear regression were: Gauss-
ian processes based regression [44], support vec-
tor machine [45, 46] and multi layered perceptron 
[47]. Figure 8 shows the learned dependency, be-
tween fractal dimension and material hardness, 
with all examples of the test dataset.

CONCLUSIONS

To conclude, we have developed a computa-
tional method for hardness evaluation from mi-
crostructure images based on fractal dimension 

analysis. The dataset containing 1139 hardness 
measurements and corresponding images of 
S235JR steel was used for this case. Result of 
this study may potentially lead to development in 
techniques used for microstructure image analy-
sis. Moreover, correlation between materials 
properties and its fractal dimension might become 
useful tool in both examination and tailoring ma-
terials properties. However, further research is re-
quired. Following conclusions were drawn from 
the results of conducted experiments.
• Fractal dimension is potentially robust feature, 

which can be used for prediction of materials’ 
properties using microstructure images. How-
ever, the achieved results, even in the best case 

Figure 7. Dependency of fractal dimension value 
on median absolute error for fractal dimensions

Figure 6. Dependency of fractal dimension 
value on median absolute error

Table 3: Results for other downstream models including. 

Method MAE MDE STD
Linear regression 5.16 4.12 3.83
Gaussian processes regression 5.15 4.15 4.06
Support vector machine 5.21 4.27 3.55
Multi-layered perceptron 6.61 5.46 0.03

Figure 8. Learned dependency between fractal 
dimension and material hardness for linear regression
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were only around 20% better than the pro-
posed baseline method, which is not enough 
to present the method as fully developed.

 • Standard deviation of predictions is quite low, 
which supports the hypothesis of high noise 
presence in used dataset. To confirm the re-
sults, more experiments should be conducted 
with varying, but known degree of random-
ness in the data.

 • Methods with small number of parameters, 
namely Otsu-based index and fractal dimen-
sion index achieve better results than those 
with higher number, such as 2-point correla-
tion or vision transformer index, which agrees 
with the theory of statistics, in which statisti-
cal models with low number of variables are 
less prone to noise in the data. However, some 
useful features, which were not found dur-
ing this analysis could exist and potentially 
improve the quality of the estimation. Those 
features could be obtained using for example 
frequency analysis of the image, multi-point 
correlation or morphological operations.
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