Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we study forced harmonic waves in a magneto-electro-viscoelastic (MEV) nanobeam embedded in a viscoelastic foundation using nonlocal strain gradient elasticity theory. The viscoelastic foundation is modeled as a Winkler-Pasternak layer. The governing equations of the nonlocal strain gradient viscoelastic nanobeam are derived using Hamilton’s principle and solved analytically. A parametric study is presented to examine the effects of physical variables on the field. It is found that the effect of strain gradient and nonlocal parameter on dimensionless amplitude and phase angle is quite important. The findings from this study highlight the significance of identifying magneto-piezoelectricity in predicting the vibration characteristics of intelligent nanostructures and elucidating the impact of humid thermal effects on nanomaterials.
Czasopismo
Rocznik
Tom
Strony
617--644
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mathematics, Nehru Memorial College Puthanampatti, Trichy, Tamilnadu, India
autor
- Department of Mathematics, Nandha Arts and Science College Erode, Tamilnadu, India
autor
- Department of Mathematics, Karunya Institute of Technology and Sciences Coimbatore-641114, Tamilnadu, India
autor
- Department of Mechanical Engineering, Imam Khomieni International University Qazvin 34148-96818, Iran
Bibliografia
- 1. Van Den Boomgaard J., Terrell D.R., Born R.A.J., Giller H.F.J.I., An in situ grown eutectic magnetoelectric composite material, Journal of Materials Science, 9: 1705– 1709, 1974, doi: 10.1007/BF00540770.
- 2. Zheng H., Wang J., Lofland S.E., Ma Z., Mohaddes-Ardabili L., Zhao T., Salamanca-Riba L., Shinde S.R., Ogale S.B., Bai F., Viehland D., Jia Y., Schlom D.G., Wuttig M., Roytburd A., Ramesh R., Multiferroic BaTiO3-CoFe2O4 nanostructures, Science, 303 (5658): 661–663, 2004, doi: 10.1126/science.1094207.
- 3. Martin L.W., Crane S.P., Chu Y.H., Holcom M.B., Gajek M., Huijben M., Yang C.H., Balke N., Ramesh R., Multiferroics and magnetoelectrics: thin films and nanostructures, Journal of Physics: Condensed Matter, 20(43): 434220, 2008, doi: 10.1088/0953-8984/20/43/434220.
- 4. Wang Y., Hu J.M., Lin Y.H., Nan C.W., Multiferroic magnetoelectric composite nanostructures, NPG Asia Materials, 2: 61-68, 2010, doi: 10.1038/asiamat.2010.32.
- 5. Prashanthi K., Shaibani P.M., Sohrabi A., Natarajan T.S., Thundat T., Nanoscale magnetoelectric coupling in multiferroic BiFeO3 nanowires, Physica Status Solidi RRL, 6: 244–246, 2012, doi: 10.1002/pssr.201206135.
- 6. Eringen A., Mechanics of micromorphic continua, [in] E. Kr¨oner (Ed.), Mechanics of Generalized Continua, IUTAM Symposia, Springer, Berlin, Heidelberg, 1968, pp. 18–35, doi: 10.1007/978-3-662-30257-6 2.
- 7. Eringen A., Nonlocal polar elastic continua, International Journal of Engineering Science, 10(1): 1–16, 1972, doi: 10.1016/0020-7225(72)90070-5.
- 8. Eringen A., Nonlocal micropolar field theory, [In:] Continuum Physics, Eringen A.C. (Ed.), Academic Press, New York, 1976.
- 9. Eringen A., Nonlocal Continuum Field Theories, Springer, New York, 2002.
- 10. Eringen A., Nonlocal continuum mechanics based on distributions, International Journal of Engineering Science, 44(3–4): 141–147, 2006, doi: 10.1016/j.ijengsci.2005.11.002.
- 11. Eringen A.C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54(9): 4703–4710, 1983, doi: 10.1063/1.332803.
- 12. Li L., Hu Y., Ling L., Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory, Composite Structures, 133: 1079–1092, 2015, doi: 10.1016/j.compstruct.2015.08.014.
- 13. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P., Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51(8): 1477– 1508, 2003, doi: 10.1016/S0022-5096(03)00053-X.
- 14. Peddieson J., Buchanan G.R., McNitt R.P., Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science, 41(3–5): 305–312, 2003, doi: 10.1016/S0020-7225(02)00210-0.
- 15. Zenkour A.M., Sobhy M., Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium, Physica E: Low-dimensional Systems and Nanostructures, 53: 251–259, 2013, doi: 10.1016/j.physe.2013.04.022.
- 16. Wang Q., Wave propagation in carbon nanotubes via nonlocal continuum mechanics, Journal of Applied Physics, 98: 124301, 2005, doi: 10.1063/1.2141648.
- 17. Wang C.M., Kitipornchai S., Lim C.W., Eisenberger M., Beam bending solutions based on nonlocal Timoshenko beam theory, Journal of Engineering Mechanics, 134(6): 475–481, 2008, doi: 10.1061/(ASCE)0733-9399(2008)134:6(475).
- 18. Civalek O., Demir C., Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory, Applied Mathematical Modelling, 35(5): 2053–2067, 2011, doi: 10.1016/ j.apm.2010.11.004.
- 19. Murmu T., Pradhan S.C., Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E: Low-dimensional Systems and Nanostructures, 41(7): 1232–1239, 2009, doi: 10.1016/j.physe.2009.02.004.
- 20. Yang J., Ke L.L., Kitipornchai S., Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, Physica E: Low-dimensional Systems and Nanostructures, 42(5): 1727–1735, 2010, doi: 10.1016/j.physe.2010.01.035.
- 21. Roque C.M.C., Ferreira A.J.M., Reddy J.N., Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, International Journal of Engineering Science, 49(9), 976–984, 2011, doi: 10.1016/j.ijengsci.2011.05.010.
- 22. S¸ims¸ek M., Yurtcu H.H., Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory, Composite Structures, 97: 378–386, 2013, doi: 10.1016/j.compstruct.2012.10.038.
- 23. Arefi M., Zenkour A.M., A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermoelectric environment, Journal of Sandwich Structures & Materials, 18(5): 624–651, 2016, doi: 10.1177/1099636216652581.
- 24. Selvamani R., Loganathan R., Ebrahimi F., Nonlocal state-space strain gradient approach to the vibration of piezoelectric functionally graded nanobeam, Engineering Transactions, 70(4): 319–338, 2022, doi: 10.24423/EngTrans.2242.20221020.
- 25. Selvamani R., Mahaveer Sreejayan M., Ebrahimi F., Static stability analysis of mass sensors consisting of hygro-thermally activated graphene sheets using a nonlocal strain gradient theory, Engineering Transactions, 68(3): 269–295, 2020, doi: 10.24423/Eng Trans.1187.20200904.
- 26. Selvamani R., Makinde O.D., Influence of rotation on transversely isotropic piezoelectric rod coated with a thin film, Engineering Transactions, 66(3): 211–227, 2018, doi: 10.24423/EngTrans.859.20180726.
- 27. Ebrahimi F., Jafari A., Selvamani R., Thermal buckling analysis of magneto electro elastic porous FG beam in thermal environment, Advances in Nano Research, 8(1): 83–94, 2020, doi: 10.12989/anr.2020.8.1.083.
- 28. Ebrahimi F., Karimiasl M., Selvamani R., Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading, Advances in Nano Research, 8(3): 203–214, 2020, doi: 10.12989/anr.2020.8.3.203.
- 29. Ke L.L., Wang Y.S., Yang J., Kitipornchai S., Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mechanica Sinica, 30(4): 516–525, 2014, doi: 10.1007/s10409-014-0072-3.
- 30. Ke L.L., Wang Y.S., Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory, Physica E: Low-dimensional Systems and Nanostructures, 63: 52–61, 2014, doi: 10.1016/j.physe.2014.05.002.
- 31. Mantari J.L., Bonilla E.M., Soares C.G., A new tangential-exponential higher order shear deformation theory for advanced composite plates, Composites Part B: Engineering, 60: 319–328, 2014, doi: 10.1016/j.compositesb.2013.12.001.
- 32. Ebrahimi F., Salari E., Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams, Mechanics of Advanced Materials and Structures, 23(12): 1379–1397, 2016, doi: 10.1080/15376494.2015.1091524.
- 33. Ebrahimi F., Kokaba M., Shaghaghi G., Selvamani R., Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions, Advances in Nano Research, 8(2): 169–182, 2020, doi: 10.12989/ANR.2020.8.2.169.
- 34. Ebrahimi F., Hamed Hosseini S., Selvamani R., Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field, Structural Engineering and Mechanics, An International Journal, 73(5): 565–584, 2020, doi: 10.12989/sem.2020.73.5.565.
- 35. Shen Y., Hu Y., Chen W., Wang J., Guan Y., Du J., Zhang X., Ma J., Li M., Lin Y., Chen L.Q., Nan C.W., Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites, Nano Energy, 18: 176–186, 2015, doi: 10.1016/j.nanoen.2015.10.003.
- 36. Sahmani S., Aghdam M.M., Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams, Composite Structures, 179: 77–88, 2017, doi: 10.1016/j.compstruct.2017.07.064.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bec82f5-b801-476f-870b-592ea447a210