PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metrological Aspects of Abrasive Tool Active Surface Topography Evaluation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of the shape and location of abrasive grain tips as well as their changes during the grinding process, is the basis for forecasting the machining process results. This paper presents a methodology of using the watershed segmentation in identifying abrasive grains on the abrasive tool active surface. Some abrasive grain tips were selected to minimize the errors of detecting many tips on a single abrasive grain. The abrasive grains, singled out as a result of the watershed segmentation, were then analyzed to determine their geometric parameters. Moreover, the statistical parameters describing their locations on the abrasive tool active surface and the parameters characterizing intergranular spaces were determined.
Rocznik
Strony
567--577
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland
autor
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Racławicka 15-17, 75-620 Koszalin, Poland
Bibliografia
  • [1] Kacalak, W., Tandecka, K. (2012). Effect of superfinishing methods kinematic features on the machined surface. Journal of Machine Engineering, 12(4), 35-48.
  • [2] Kacalak, W., Tandecka, K., (2012). Basics of forecasting superfinishing results be the diamond lapping films. Journal of Machine Engineering, 12(4), 49-62.
  • [3] Rowe, W.B. (2009). Principles of modern grinding technology. William Andrew, Elsevier.
  • [4] Marinescu, I.D., Hitchiner, M., Uhlmann, W., Rowe, W.B., Inasaki, I. (2007). Handbook of machining with grinding wheels. CRC Press, Taylor & Francis Group.
  • [5] Nadolny, K.(2015). Wear phenomena of grinding wheels with sol-gel alumina abrasive grains and glassceramic vitrified bond during internal cylindrical traverse grinding of 100Cr6 steel. International Journal of Advance Manufacturing, 77(1), 83-98.
  • [6] Lipiński, D., Kacalak, W. (2007. Assessment of the accuracy of the process of ceramics grinding with the use of fuzzy interference. Adaptive and Natural Computing Algorithms, Lecture Notes in Computer Science, 4431, 596-603.
  • [7] Blunt, L., Ebdon, S. (1996). The application of three-dimensional surface measurement techniques to characterizing grinding wheel topography. International Journal of Machine Tools and Manufacture, 36, 1207-1226.
  • [8] Matsuno, Y., Yamada, H., Harada, M., Kobayashi, A. (1975). Microtopography of the grinding wheel surface with SEM. Annals of the CIRP, 24, 237-242.
  • [9] Lachance, S., Warkentin, A., Bauer, R.J. (2003). Development of an automated system for measuring grinding wheel wear flats. Journal of Manufacturing Systems, 22, 130-135.
  • [10] Yan, L., Rong, Y.M., Feng, J., Zhi, X.Z. (2011). Three-dimension surface characterization of grinding wheel using white light interferometer. International Journal of Advanced Manufacturing Technology, 55, 133-141.
  • [11] Chen, X., Brian Rowe, W. (1996). Analysis and simulation of the grinding process. Part I: generation of the grinding wheel surface. International Journal of Machine Tools and Manufacture, 36, 871-882.
  • [12] Koshy, P., Ives, L.K., Jahanmir, S. (1999). Simulation of diamond-ground surfaces. International Journal of Machine Tools and Manufacture, 39, 1451-1470.
  • [13] Cooper, W.L. (2000). Grinding process size effect and kinematics numerical analysis. Journal of Manufacturing Science and Engineering, 122(1), 59-69.
  • [14] Zhou, X, Xi, F. (2002). Modeling and predicting surface roughness of the grinding process. International Journal of Machine Tools and Manufacture, 42, 969-977.
  • [15] Nguyen, T.A., Butler, D.L. (2005). Simulation of precision grinding process. Part I: generation of the grinding wheel surface. International Journal of Machine Tools and Manufacture, 45, 1321-1328.
  • [16] Xie, J., Xu, J., Tang, Y., Tamaki, J. (2008). 3D graphical evaluation of micron-scale protrusion topography of diamond grinding wheel. International Journal of Machine Tools and Manufacture, 48, 1254-1260.
  • [17] Xie, J., Tamaki, J. (2006). In-process evaluation of grit protrusion feature for fine diamond grinding wheel by means of electro-contact discharge dressing. Journal of Materials Proc. Technology, 180(1−3), 83-90.
  • [18] Nguyen, A.T., Butler, D.L. (2008). Correlation of grinding wheel topography and grinding performance: a study from a viewpoint of three-dimensional surface characterization. Journal of Materials Proc. Technology, 208, 14-23.
  • [19] Darafon, A. (2013). Measuring and modelling of grinding wheel topography. Ph.D. Thesis. Dalhousie University, Halifax.
  • [20] Bazan, A., Kawalec, A., Krok, M., Chmielik, I.P. (2014). The analysis of selected parameters of grains of CBN grinding wheels. Mechanik, 87(8-9), 49-57.
  • [21] Xie, J., Wei, F., Zheng, J.H., Tamaki, J., Kubo, A. (2011). 3D laser investigation on micron-scale grain protrusion topography of truncated diamond grinding wheel for precision grinding performance. International Journal of Machine Tools and Manufacture, 51, 411-419.
  • [22] Soille, P. (2004). Morphological image analysis: principles and applications. Springer-Verlag.
  • [23] Blunt, L., Jiang, X. (2003). Advanced techniques for assessment surface topography. Kogan Page Science.
  • [24] Lonardo, P.M., Trumpold, H., De Chiffre, L. (1996). Progress in 3D surface microtopography characterization. Annals of the CIRP, 45, 589-598.
  • [25] Lipiński, D., Kacalak, W., Tomkowski, R. (2014). Methodology of evaluation of abrasive tool wear with the use of laser scanning microscopy. Scanning, 36(1), 53-63, http://dx.doi.org/10.1002/sca.21088
  • [26] Beucher, S., Meyer, F. (1999). The morphological approach to segmentation: the watershed transformation. Dougherty, E.R (ed). Mathematical morphology in image processing. SPIE i IEEE Presses, Bellingham, WA, 433-481.
  • [27] Wu, Q., Merchant, F.A., Castleman, K.R. (2008). Microscope image processing. Elsevier.
Uwagi
EN
This work was supported by the National Center for Research and Development of the Polish Republic (grant # INNO-TECH-K3/IN3/43/229135/NCBR/14).
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0beac31c-fceb-43a5-95eb-5b1dfb53f263
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.