Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bali, Indonesia, renowned for its cultural heritage and natural beauty, has untapped potential in agrotourism, offering a sustainable avenue for economic diversification and cultural preservation. This study aims to identify and map agrotourism potential in Gianyar Regency using advanced geospatial analysis and the Random Forest algorithm, integrating antrophogenic and environmental variables. Ten key factors were analyzed, including proximity to tourist attractions, tourism facilities, and road networks, as well as environmental variables such as NDVI, LSWI, elevation, slope, temperature, and rainfall. A total of 410 data points, including 111 existing agrotourism locations, were utilized to develop and validate the model. The Random Forest algorithm demonstrated strong performance, achieving an accuracy of 86%, a recall of 72%, and an F1 score of 78%. The model’s high specificity (92%) and low false positive rate (8%) underscored its reliability in excluding unsuitable areas while accurately classifying high-potential zones. Variable importance analysis revealed NDVI (13.13%) and LSWI (13.11%) as the most critical factors, highlighting the significance of soil fertility and moisture in agrotourism suitability. The zoning map categorized land into five potential levels, with 10.11% identified as having very high potential, concentrated in subdistricts like Tegallalang and Payangan. Tegallalang, with its iconic Subak rice terraces, exemplifies the integration of agricultural sustainability and cultural heritage, while Payangan offers interactive horticulture and plantation experiences. Priority villages for development, including Tampaksiring, Kedewatan, and Keliki, demonstrated >50% agrotourism potential, underscoring their suitability for targeted investment and strategic planning. This study provides a robust framework for data-driven agrotourism development, combining geospatial technology with sustainable tourism strategies. It highlights the importance of optimizing natural and cultural assets to enhance Bali’s global appeal while ensuring economic and environmental sustainability. Future research should refine zoning models with additional parameters and collaborative approaches to maximize the potential of agrotourism in rural areas.
Wydawca
Rocznik
Tom
Strony
1--16
Opis fizyczny
Bibliogr. 68 poz., rys., tab
Twórcy
autor
- Sustainable Development and Finance Post Graduate Program, Udayana University, Denpasar, Indonesia
autor
- Agroecotechnology Study Program, Faculty of Agriculture, Udayana University, Denpasar, Indonesia
autor
- Agroecotechnology Study Program, Faculty of Agriculture, Udayana University, Denpasar, Indonesia
autor
- Spatial Data Infrastructure Development Center (PPIDS), Udayana University, Denpasar, Indonesia
Bibliografia
- 1. Abel, C., Horion, S., Tagesson, T., De Keersmaecker, W., Seddon, A. W. R., Abdi, A. M., & Fensholt, R. (2021). The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nature Sustainability, 4(1). https://doi.org/10.1038/s41893-020-00597-z
- 2. Adhika, I. M., & Putra, I. D. G. A. D. (2021). Reinvigorating cultural landscapes for planning cultural tourism in Bali. In Geojournal of Tourism and Geosites 33(4). https://doi.org/10.30892/gtg.334spl03-594
- 3. Adnyana, I. W. S., As-syakur, A. R., Suyarto, R., Sunarta, I. N., Nuarsa, I. W., Diara, I. W., Saifulloh, M., & Wiyanti. (2024). Geospatial Technology for Climate Change: Influence of EN-SO and IOD on Soil Erosion. In Technological Approaches for Climate Smart Agriculture (pp. 249–275). Springer.
- 4. Amini, S., Saber, M., Rabiei-Dastjerdi, H., & Homayouni, S. (2022). Urban land use and land cover change analysis using random forest classification of landsat time series. Remote Sensing, 14(11). https://doi.org/10.3390/rs14112654
- 5. Amir, F. L. (2023). Analysis of the potential of subak as a sustainable tourism attraction based on agro-tourism in the Village of Jatiluwih. Pusaka: Journal of Tourism, Hospitality, Travel and Business Event, 5(1). https://doi.org/10.33649/pusaka.v5i1.198
- 6. Bao Pham, Q., Ajim Ali, S., Parvin, F., Van On, V., Mohd Sidek, L., Đurin, B., Cetl, V., Šamanović, S., & Nguyet Minh, N. (2024). Multi-spectral remote sensing and GIS-based analysis for decadal land use land cover changes and future prediction using random forest tree and artificial neural network. Advances in Space Research, 74(1). https://doi.org/10.1016/j.asr.2024.03.027
- 7. Bhayunagiri, I. B. P., & Saifulloh, M. (2022). Mapping of subak area boundaries and soil fertility for agricultural land conservation. Geographia Technica, 17(2). https://doi.org/10.21163/GT_2022.172.17
- 8. Bhayunagiri, I. B. P., & Saifulloh, M. (2023). Urban footprint extraction derived from worldview-2 satellite imagery by random forest and k-nearest neighbours algorithm. IOP Conference Series: Earth and Environmental Science, 1200(1), 12043.
- 9. Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2). https://doi.org/10.1007/s11749-016-0481-7
- 10. Breiman, L. (2001). Random forests. Machine Learning, 45(1). https://doi.org/10.1023/A:1010933404324
- 11. Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., & Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment, 151. https://doi.org/10.1016/j.atmosenv.2016.11.066
- 12. Budiasa, I. W., & Ambarawati, I. G. A. (2014). Community based agrotourism as an innovative integrated farming system development model towards sustainable agriculture and tourism in Bali. Journal of the International Society for Southeast Asian Agricultural Sciences, 20(1).
- 13. Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11). https://doi.org/10.1890/07-0539.1
- 14. Chi, X., Lee, S. K., Ahn, Y. joo, & Kiatkawsin, K. (2020). Tourist-perceived quality and loyalty intentions towards rural tourism in China. Sustainability (Switzerland), 12(9). https://doi.org/10.3390/su12093614
- 15. Diara, I. W., Susila, K. D., Wiyanti, W., Sunarta, I. N., Kusmiyarti, T. B., & Saifulloh, M. (2024). Exploring the Influence of Various Land Use Land Cover on Land Surface Temperature of Coastal Tourism Areas in Bali Using Landsat 9. Environmental Research, Engineering and Man-agement, 80(2), 118–132.
- 16. Diara, I. W., Suyarto, R., & Saifulloh, M. (2022). Spatial distribution of landslide susceptibility in new road construction Mengwitani-Singaraja, Bali-Indonesia: based on geospatial data. International Journal of GEOMATE, 23(96). https://doi.org/10.21660/2022.96.3320
- 17. Diara, I. W., Wahyu Wiradharma, I. K. A., Suyarto, R., Wiyanti, W., & Saifulloh, M. (2023). Spatiotemporal of landslide potential in upstream areas, Bali tourism destinations: remote sensing and geographic information approach. Journal of Degraded and Mining Lands Management, 10(4). https://doi.org/10.15243/jdmlm.2023.104.4769
- 18. Erythrina, E., Anshori, A., Bora, C. Y., Dewi, D. O., Lestari, M. S., Mustaha, M. A., Ramija, K. E., Rauf, A. W., Mikasari, W., Surdianto, Y., Suriadi, A., Purnamayani, R., Darwis, V., & Syahbuddin, H. (2021). Assessing opportunities to increase yield and profit in rainfed lowland rice systems in Indonesia. Agronomy, 11(4). https://doi.org/10.3390/agronomy11040777
- 19. Ferreira, D. I. R., & Sánchez-Martín, J. M. (2022). Agricultural Landscapes as a Basis for Promoting Agritourism in Cross-Border Iberian Regions. Agriculture (Switzerland), 12(5). https://doi.org/10.3390/agriculture12050716
- 20. Fox, E. W., Hill, R. A., Leibowitz, S. G., Olsen, A. R., Thornbrugh, D. J., & Weber, M. H. (2017). Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology. Environmental Monitoring and Assessment, 189(7). https://doi.org/10.1007/ s10661-017-6025-0
- 21. Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14). https://doi.org/10.1016/j.patrec.2010.03.014
- 22. Getachew, M., Tolassa, K., De Frenne, P., Verheyen, K., Tack, A. J. M., Hylander, K., Ayalew, B., & Boeckx, P. (2022). The relationship between elevation, soil temperatures, soil chemical characteristics, and green coffee bean quality and biochemistry in southwest Ethiopia. Agronomy for Sustainable Development, 42(4). https://doi.org/10.1007/s13593-022-00801-8
- 23. Heydarian, M., Doyle, T. E., & Samavi, R. (2022). MLCM: Multi-Label Confusion Matrix. IEEE Access, 10. https://doi.org/10.1109/ACCESS.2022.3151048
- 24. Islam, K. I., Elias, E., Carroll, K. C., & Brown, C. (2023). Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-Driven Watershed. Remote Sensing, 15(16). https://doi.org/10.3390/rs15163999
- 25. Jun, M. J. (2021). A comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: the case of the Seoul metropolitan area. International Journal of Geographical Information Science, 35(11). https://doi.org/10.1080/13 658816.2021.1887490
- 26. Kartini, N. L., Saifulloh, M., Trigunasih, N. M., & Narka, I. W. (2023). Assessment of Soil Degradation Based on Soil Properties and Spatial Analysis in Dryland Farming. Journal of Ecological Engineering, 24(4). https://doi.org/10.12911/22998993/161080
- 27. Kartini, N. L., Saifulloh, M., Trigunasih, N. M., Sukmawati, N. M. S., & Mega, I. (2024). Impact of Long-Term Continuous Cropping on Soil Nutrient Depletion. Ecological Engineering & Envi-ronmental Technology (EEET), 25(11).
- 28. Lanya, I., Subadiyasa, N., Sardiana, K., & Ratna Adi, G. P. (2018). Planning of Agro-Tourism Development, Specific Location in Green Open Space Sarbagita Area, Bali Province. IOP Conference Series: Earth and Environmental Science, 123(1). https://doi.org/10.1088/1755-1315/123/1/012038
- 29. Mudana, I. G., Ernawati, N. M., & Voda, M. (2021). Analysis of the evolving cultural tourism implementation in Bali Indonesia. Multicultural Education, 7(6).
- 30. Munier, N., & Hontoria, E. (2021). Shortcomings of the AHP Method. https://doi.org/10.1007/978-3-030-60392-2_5
- 31. Mustafa, O. M., Ahmed, O. M., & Saeed, V. A. (2024). Comparative analysis of decision tree algorithms using gini and entropy criteria on the forest covertypes dataset. The International Conference on Innovations in Computing Research, 185–193.
- 32. N, P., Triatmadja, R., Legono, D., & Nurrochmad, F. (2023). Subak irrigation system: A heritage of a sustainable hydro-environment. In Water Projects and Technologies in Asia 315–326. CRC Press.
- 33. Pimenta, F. M., Speroto, A. T., Costa, M. H., & Dionizio, E. A. (2021). Historical changes in land use and suitability for future agriculture expansion in Western Bahia, Brazil. Remote Sensing, 13(6). https://doi.org/10.3390/rs13061088
- 34. Purbo-Hadiwidjojo, M. M. (1971). The status of engineering geology in Indonesia: 1970. Bulletin of the International Association of Engineering Geology - Bulletin de l’Association Internationale de Géologie de l’Ingénieur, 4(1). https://doi.org/10.1007/BF02635379
- 35. Putri, P. Y. A., & Saputra, K. A. K. (2022). Regulatory impact analysis on local government regulation standards for organizing cultural tourism in Bali. American Research Journal of Humanities & Social Science (ARJHSS), 5(4).
- 36. Rosardi, R. G., Prajanti, S. D. W., Atmaja, H. T., Juhadi, & Yanti, D. (2022). Sustainable tourism development strategy with AHP (Analytical Hierarchy Process) method in pagilaran tea plantation agrotourism, Indonesia. International Journal of Sustainable Development and Planning, 17(4). https://doi.org/10.18280/ijsdp.170429
- 37. Sahani, N., & Ghosh, T. (2021). GIS-based spatial prediction of recreational trail susceptibility in protected area of Sikkim Himalaya using logistic regression, decision tree and random forest model. Ecological Informatics, 64. https://doi.org/10.1016/j.ecoinf.2021.101352
- 38. Sardiana, I. K. (2018). The study of development of urban farming agrotourism Subak-Irrigation- Based in Sanur tourism area, Denpasar City, Bali. Journal of Indonesian Tourism and Development Studies, 6(1), 33.
- 39. Saroinsong, F. B. (2020). Supporting plant diversity and conservation through landscape planning: A case study in an agrotourism landscape in Tampusu, North Sulawesi, Indonesia. Biodiversitas, 21(4). https://doi.org/10.13057/biodiv/d210432
- 40. Satriawan, I. K., Pujaastawa, I. B. G., & Sarjana, I. M. (2015). Development of small-scale agro-tourism in the Province of Bali, Indonesia. Advances in Environmental Biology, 9(21).
- 41. Serrano‐Grijalva, L., Ochoa‐Hueso, R., Veen, G. F., Repeto‐Deudero, I., Van Rijssel, S. Q., Koorneef, G. J., & Van der Putten, W. H. (2024). Normalized difference vegetation index analy-sis reveals increase of biomass production and stability during the conversion from conventional to organic farming. Global Change Biology, 30(8), e17461.
- 42. Singh, R., Behera, M. D., Das, P., Rizvi, J., Dhyani, S. K., & Biradar, C. M. (2022). Agroforestry suitability for planning site-specific interventions using machine learning approaches. Sustainability (Switzerland), 14(9). https://doi.org/10.3390/ su14095189
- 43. Soniari, N. N., Trigunasih, N. M., Sumarniasih, M. S., & Saifulloh, M. (2024). Exploring soil erodibility: integrating field surveys, laboratory analysis, and geospatial techniques in sloping agricultural terrains. Journal of Degraded & Mining Lands Management, 12(1).
- 44. Suamba, I. K., Sumiyati, Krisnandika, A. A. K., Tika, I. W., Sulastri, N. N., & Arisena, G. M. K. (2023). The subak-based agrotourism management model in the world cultural heritage area of Catur Angga Batukaru Tabanan Regency, Bali Province, Indonesia. African Journal of Food, Agriculture, Nutrition and Development, 23(2). https://doi.org/10.18697/ajfand.117.21970
- 45. Suamba, K., Windia, W., & Mekse Kori Arisena, G. (2020). Subak system social services in Bali. Palarch’s Journal Of Archaeology Of Egypt/ Egyptology, 17(4).
- 46. Sudarma, I., Saifulloh, M., Diara, I. W., & As- Syakur, A. (2024). Carbon Stocks Dynamics of Urban Green Space Ecosystems Using Time- Series Vegetation Indices. Ecological Engineering & Environmental Technology (EEET), 25(9).
- 47. Sunarta, I. N., & Saifulloh, M. (2022a). Coastal tourism: impact for built-up area growth and correlation to vegetation and water indices derived from Sentinel-2 remote sensing imagery. Geojournal of Tourism and Geosites , 41(2). https://doi.org/10.30892/gtg.41223-857
- 48. Sunarta, I. N., & Saifulloh, M. (2022b). Spatial variation of NO2 levels during the COVID-19 pandemic in the Bali tourism area. Geographia Technica, 17(1). https://doi.org/10.21163/ GT_2022.171.11
- 49. Susila, I., Dean, D., Harismah, K., Priyono, K. D., Setyawan, A. A., & Maulana, H. (2024). Does interconnectivity matter? An integration model of agro-tourism development. Asia Pacific Management Review, 29(1). https://doi.org/10.1016/j. apmrv.2023.08.003
- 50. Susila, K. D., Ginting, D. C. B., Adnyana, I., Saifulloh, M., & Arthagama, I. (2024). Enhancing soil quality for sustainable agricultural practices in Subak rice fields. Journal of Degraded & Mining Lands Management, 12(1).
- 51. Susila, K. D., Trigunasih, N. M., & Saifulloh, M. (2024). Monitoring Agricultural Drought in Savanna Ecosystems Using the Vegetation Health Index--Implications of Climate Change. Ecological Engineering & Environmental Technology (EEET), 25(9).
- 52. Suyarto, R., Diara, I. W., Susila, K. D., Saifulloh, M., Wiyanti, W., Kusmiyarti, T. B., & Sunarta, I. N. (2023). Landslide inventory mapping derived from multispectral imagery by Support Vector Machine (SVM) algorithm. IOP Conference Series: Earth and Environmental Science, 1190(1). https://doi.org/10.1088/1755-1315/1190/1/012012
- 53. Suyarto, R., Wiyanti, Saifulloh, M., Fatahillah, A. W., Diara, I. W., Susila, K. D., & Kusmiyarti, T. B. (2023). Hydrological Approach for Flood Overflow Estimation in Buleleng Watershed, Bali. International Journal of Safety and Security Engineering, 13(5). https://doi.org/10.18280/ ijsse.130512
- 54. Tavana, M., Soltanifar, M., & Santos Arteaga, F. J. (2023). Analytical hierarchy process: revolu-tion and evolution. Annals of Operations Research, 326(2). https://doi.org/10.1007/ s10479-021-04432-2
- 55. Tikuye, B. G., Rusnak, M., Manjunatha, B. R., & Jose, J. (2023). Land use and land cover change detection using the random forest approach: The case of the upper blue Nile River Basin, Ethiopia. Global Challenges, 7(10). https://doi.org/10.1002/gch2.202300155
- 56. Tomej, K., & Liburd, J. J. (2020). Sustainable accessibility in rural destinations: a public transport network approach. Journal of Sustainable Tourism, 28(2). https://doi.org/10.1080/09669582.20 19.1607359
- 57. Trigunasih, N. M., & Saifulloh, M. (2022). The Investigating Water Infiltration Conditions Caused by Annual Urban Flooding Using Integrated Re mote Sensing and Geographic Information Systems. Journal of Environmental Management & Tourism, 13(5), 1467–1480.
- 58. Trigunasih, N. M., & Saifulloh, M. (2023). Investigation of soil erosion in agro-tourism area: guideline for environmental conservation planning. Geographia Technica, 18(1). https://doi.org/10.21163/GT_2023.181.02
- 59. Trigunasih, N. M., Narka, I. W., & Saifulloh, M. (2023a). Mapping eruption affected area using Sentinel-2A imagery and machine learning techniques. Journal of Degraded and Mining Lands Management, 11(1). https://doi.org/10.15243/jdmlm.2023.111.5073
- 60. Trigunasih, N. M., Narka, I. W., & Saifulloh, M. (2023b). Measurement of soil chemical properties for mapping soil fertility status. International Journal of Design and Nature And Ecody-Namics, 18(6). https://doi.org/10.18280/ijdne.180611
- 61. Valero-Carreras, D., Alcaraz, J., & Landete, M. (2023). Comparing two SVM models through different metrics based on the confusion matrix. Computers and Operations Research, 152. https://doi.org/10.1016/j.cor.2022.106131
- 62. Wang, J., Sun, X., Cheng, Q., & Cui, Q. (2021). An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting. Science of the Total Environment, 762. https://doi.org/10.1016/j.scitotenv.2020.143099
- 63. Wicaksono, K. P., Tyasmoro, S. Y., Saitama, A., & Permatasari, P. N. (2024). Analyzing of Agrotourism Potential in Malang City. International Journal of Environment, Agriculture and Biotechnology, 9(2).
- 64. Wiranatha, A. S., Suryawardani, I. G. A. O., Petr, C., & Kencana, I. P. E. N. (2024). Priority of Criteria for Agritourism Development in Bali. Jurnal Kajian Bali (Journal of Bali Studies), 14(1), 234–258.
- 65. Xiang, K., Yuan, W., Wang, L., & Deng, Y. (2020). An lswi-based method for mapping irrigated areas in china using moderate-resolution satellite data. In Remote Sensing 12(24). https://doi.org/10.3390/rs12244181
- 66. Yudhari, I. D. A. S., Darwanto, D. H., Waluyati, L. R., & Mulyo, J. H. (2020). The development of agro-tourism based on arabica coffee plantation in bali. Journal of Environmental Management and Tourism, 11(1). https://doi.org/10.14505/jemt.11.1(41).12
- 67. Zhang, X., Huang, W., Lin, X., Jiang, L., Wu, Y., & Wu, C. (2020). Complex image recognition algorithm based on immune random forest model. In Soft Computing 24(16). https://doi.org/10.1007/s00500-020-04706-0
- 68. Zhang, Z., Plathong, S., Sun, Y., Guo, Z., Munnoy, T., Ma, L., Jantharakhantee, C., & Tanboot, L. (2020). Analysis of the island tourism environment based on tourists’ perception—A case study of Koh Lan, Thailand. Ocean and Coastal Management, 197. https://doi.org/10.1016/j.ocecoaman.2020.105326
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bdf0cdc-53fc-4558-9424-bb7f0dfb5318
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.