PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Estimation of Chlorophyll-a, TSM and salinity in mangrove dominated tropical estuarine areas of Hooghly River, North East Coast of Bay of Bengal, India using sentinel-3 data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study aims to assess variations in spatio-temporal characteristics of water quality parameters from three tropical estuaries, namely Muri-Ganga, Saptamukhi, and Hooghly, in the western portion of the Indian Sundarbans. Reliable retrieval of near-surface concentration of water quality parameters such as Chlorophyll-a, SST & TSM from diverse aquatic ecosystems with broad ranges of tropical requirements has always remained a complex issue. In this study, application of Case 2 Regional Colour Correction (C2RCC) processor has been tested for its accuracy across different bio-optical regimes in both inland and coastal waters. Satellite images for the same period were also collected and analysed using the C2RCC processing sequence to retrieve parameters like the depth of water, surface reflectance, water temperature, inherent optical properties (IOPs), chlorophyll-a, salinity, total suspended matter (TSM), etc., using the SNAP software. In situ sampling from specific locations within these estuaries and water quality analysis were conducted for the period 2017-2019. The OLCI retrieved datasets were compared and corroborated with field survey datasets. It was observed that the highest amount of TSM was recorded at Diamond Harbour during the 2018 pre-monsoon season (301.40 mg/L field-based value and 308.54 mg/L estimated value). Similarly, chlorophyll-a had higher concentrations throughout the monsoon season (3.03 mg m-3, (field survey), and 2.96 mg m-3, (estimated) at Fraserganj and Sagar south points. A very good correlation was observed for all seasons for Chl-a (r = 0.829) and TSM (r = 0.924) between the OLCI data and in situ measurements. Higher correlation and significant ‘r’ values highlight the importance of having both field-based as well as remotely-sensed information in understanding any dynamic system in a sustained manner. Results also confirm that the water quality model using OLCI Chl-a and TSM products outperforms conventional techniques. The study demonstrates the efficacy of using Sentinel 3 OCLI data for shallow marine and estuarine remote sensing applications, especially for monitoring TSM and Chl-a concentrations.
Czasopismo
Rocznik
Strony
303--322
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Department of Marine Science, University of Calcutta, Kolkata, West Bengal 700019, India
autor
  • Department of Radiophysics, University of Calcutta, Kolkata, West Bengal, India
  • Department of Marine Science, University of Calcutta, Kolkata, West Bengal 700019, India
  • Department of Marine Science, University of Calcutta, Kolkata, West Bengal 700019, India
autor
  • Space Application Centre, ISRO, Ahmedabad, Gujarat, India
autor
  • Department of Marine and Earth Sciences, Florida Gulf Coast University, Fort Myers, USA
  • Department of Marine Science, University of Calcutta, Kolkata, West Bengal 700019, India
Bibliografia
  • 1. Acker J (2013) How two sides of the atlantic contributed to understanding of the global Oceans: Charles Yentsch and Andre Morel. Limnol Oceanogr Bull 22:2-6
  • 2. Bag R, Mondal I, Bandyopadhyay J (2019) Assessing the oscillation of channel geometry and meander migration cardinality of Bha-girathi river, West Bengal. India J Geogr Sci 29:1-22. https://doi. org/10.1007/s11442-019-0000-0
  • 3. Bandyopadhyay J, Mondal I, Samanta N (2014) Shore line shifting of Namkhana Island of Indian Sundarban, South 24 Parganas, West Bengal, India, using remote sensing and GIS techniques. Int J Eng Sci Res Technol 3(5):162-169
  • 4. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752-755
  • 5. Bonekamp H, Montagner F, Santacesaria V, Loddo CN, Wannop S (2016) Core operational sentinel-3 marine data product services as part of the copernicus space component. Ocean Sci 12:787-795
  • 6. Brockmann C, Doerffer R, Peters M, Kerstin S, Embacher S, Ruescas A (2016) Evolution of the C2RCC neural network for sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. Living Planet Symposium, Proceedings of the conference held 9-13 May 2016 in Prague, vol 740, p 54. https://ui.adsabs.harvard.edu/abs/2016ESASP.740E..54B
  • 7. De TK, Sankar M, Raman SK, Mukherjee A (2021) Ecological assessment of Hooghly River considering a few of the more perturbed sites based on some relevant physico-chemical and biological variables—a part of the AVIRIS-NG (NASA-ISRO) ground truth verification. Reg Stud Mar Sci 41(2021):101598. https://doi.org/ 10.1016/j.rsma.2020.101598
  • 8. Doerer R, Sorensen K, Aiken J (1999) MERIS potential for coastal zone applications. Int J Remote Sens 20:1809-1818
  • 9. Doerffer R (2002) Protocols for the validation of MERIS water products; European space agency Doc. No. PO-TN-MEL-GS-0043; GKSS: Geesthacht, Germany, pp 1-42
  • 10. Donlon C, Berruti B, Buongiorno A, Ferreira M, Féménias P, Frerick J, Goryl P, Klein U, Laur H, Mavrocordatos C et al (2014) Remote sensing of environment the global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens Environ 120:37-57
  • 11. ESA sentinel-3-missions-sentinel online. available online: https://senti nel.esa.int/web/sentinel/missions/ sentinel-3 (Accessed on 7 April 2019)
  • 12. ESA user guides-sentinel-3 OLCI-heritage-sentinel online. available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/overview/heritage (Accessed on 8 April 2019)
  • 13. ESA (2016) Overview/Copernicus/Observing the Earth/Our Activi-ties/ESA. Available online:http://www.esa.int/Our_Activities/ Observing_the_Earth/Copernicus/Overview4 (Accessed on 2 April 2019)
  • 14. Grasshoff K, Ehrhardt M, Kremling K (eds) (1983) Methods of Seawater Analysis, 2nd edn. Verlag Chemie, Weinheim, p 317
  • 15. Kratzer S, Moore G (2018) Inherent optical properties of the Baltic Sea in comparison to other Seas and Oceans. Remote Sens 10:418. https://doi.org/10.3390/rs10030418
  • 16. Kyryliuk D, Kratzer S (2019) Evaluation of Sentinel-3A OLCI products derived using the case-2 regional coast colour processor over the Baltic sea. Sensors 19:3609. https://doi.org/10.3390/s19163609
  • 17. Lee Z, Wei J, Voss K, Lewis M, Bricaud A, Huot Y (2015) Hyper-spectral absorption coefficient of “pure” seawater in the range of 350-550 nm inverted from remote sensing reflectance. Appl Opt 54:546-558. https://doi.org/10.1364/AO.54.000546
  • 18. Li J, Jamet C, Zhu JHH, Li B, Yang TJ, A.NGuo, K. Jia D. (2019) Error budget in the validation of radiometric products derived from OLCI around the China Sea from Open Ocean to coastal waters compared with MODIS and VIIRS. Remote Sens 2019:11. https://doi.org/10.3390/rs11202400
  • 19. Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245-1271
  • 20. Merheim-Kealy P, Huot JP, Delwart S (1999) The MERIS ground segment. Int J Remote Sens 20:1703-1712
  • 21. Mograne M, Jamet C, Loisel H, Vantrepotte V, Mériaux X, Cauvin A (2019) Evaluation of five atmospheric correction algorithms over French optically-complex waters for the sentinel-3A OLCI Ocean color sensor. Remote Sens 11(6):668. https://doi.org/10. 3390/rs11060668
  • 22. Mondal I, Bandyopadhyay J (2014) Coastal zone mapping through geospatial technology for resource management of Indian Sundarban West Bengal. India Int J Remote Sens Appl 4(2):103-112. https:// doi.org/10.14355/ijrsa.2014.0402.04
  • 23. Mondal I, Bandyopadhyay J, Paul AK (2016) Water quality modeling for seasonal fluctuation of Ichamati River, West Bengal, India. Model Earth Syst Environ. https://doi.org/10.1007/ s40808-016-0153-3
  • 24. Mondal I, Thakur S, Ghosh PB, De TK, Bandyopadhyay J (2018) Land use/land cover modeling of Sagar Island, India using remote sensing and GIS techniques, Springer advances in intelligent systems and computing (AISC). Emerg Technol Data Min Inform Secur. https://doi.org/10.1007/978-981-13-1951-8_69:771-785
  • 25. Mondal I, Thakur S, Bandyopadhyay J (2019) Delineating lateral channel migration and risk zones of Ichamati River West Bengal, India. J Clean Prod 244:118740. https://doi.org/10.1016/j.jclep ro.2019.11874
  • 26. Mondal I, Thakur S, Juliev M, Bandyopadhyay J, De TK (2020) Spatio-temporal modelling of shoreline migration in Sagar Island, West Bengal, India. J Coast Conserv. https://doi.org/10.1007/ s11852-020-00768-2
  • 27. Mondal I, Thakur S, Juliev M, De TK (2021a) Comparative analysis of forest canopy mapping methods for Sundarban biosphere reserve. Environment Development and Sustainability, West Bengal. https://doi.org/10.1007/s10668-021-01291-6
  • 28. Mondal I, Thakur SG, De PB, T.K. (2021b) Assessing the impacts of global sea level rise (SLR) on the Mangrove forests of Indian Sundarbans using geospatial technology, geographic information science for land resource management. Wiley 11:209-228. https:// doi.org/10.1002/9781119786375.ch11
  • 29. Mondal I, Thakur S, De A, Bandyopadhyay J, De TK (2021c) Estimating water quality of Sundarban coastal zone area using landsat series satellite data. River Health Ecol South Asia. https://doi.org/ 10.1007/978-3-030-83553-8_8,pp.155-172
  • 30. Moore GF, Aiken J, Lavender SJ (1999) The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in case II waters: application to MERIS. Int J Remote Sens 20:1713-1733
  • 31. Moses WJ, Gitelson AA, Berdnikov S, Povaznyy V (2009) Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—Successes and challenges. Environ Res Lett 4:4
  • 32. Paavel B, Arst H, Metsamaa L, Toming K, Reinart A (2011) Optical investigations of CDOM-rich coastal waters in Parnu Bay. Estonian J Earth Sci 60:102-112
  • 33. Preisendorfer RW (1986) Secchi disk science: Visual optics of natural waters. Limnol Oceanogr 3(5):909-926
  • 34. Rose L, Bhaskaran PK, Kani SP (2015) Tidal analysis and prediction for the Gangra location Hooghly Estuary in the Bay of Bengal. Curr Sci 109(4):745-758
  • 35. Strickland JD, Parsons TR (1972) A Manual of seawater analysis. Fish Res Board Can 167:310
  • 36. Thakur S, Mondal I, Ghosh PB, Das P, De TK (2019) A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques. Spat Inform Res 28(1):39-51. https://doi.org/10.1007/ s41324-019-00268-y
  • 37. Thakur S, Maity D, Mondal I, Basumatary G, Ghosh PB, Das P, De TK (2020a) Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environ Develop Sustain 23(2):1917-1943. https://doi.org/10.1007/s10668-020-00656-7
  • 38. Thakur S, Mondal I, Bar S, Nandi S, Das P, Ghosh PB et al (2020b) Shoreline changes and its impact on the mangrove ecosystems of some Islands of Indian Sundarbans, North- East coast of India. J Clean Prod 284:124764. https://doi.org/10.1016/j.jclepro.124764 Tilstone GH, Pardo P, Dall’Olmo G, Brewin RJW, Nencioli F, Des-
  • 39. sailly D, Kwiatkowska E, Casal T, Donlon C (2021) Performance of Ocean colour Chlorophyll a algorithms for sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic. Remote Sens Environ 260:112444. https://doi.org/10. 1016/j.rse.2021.112444
  • 40. Toming K, Kutser T, Uiboupin R, Arikas A, Vahter K, Paavel B (2017) Mapping water quality parameters with sentinel-3 ocean and land colour instrument imagery in the Baltic Sea. Remote Sens 9:1070. https://doi.org/10.3390/rs910107
  • 41. Xue K, Ma R, Duan H, Shen M, Boss E, Cao Z (2019) Inversion of inherent optical properties in optically complex waters using
  • 42. sentinel-3A/OLCI images: a case study using China’s three largest freshwater lakes. Remote Sens Environ 225:328-346
  • 43. Zibordi G, Melin F, Berthon J-F (2018) A regional assessment of OLCI data products. IEEE Geosci Remote Sens Lett 15(10):1490-1494. https://doi.org/10.1109/LGRS.2018.2849329
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bd81e52-75ec-4b16-99de-d13117444527
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.