Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Herstellung röhrförmiger mikrobauteile aus Kunststoff - Aktuelle Entwicklungen
Języki publikacji
Abstrakty
For numerous technical sectors, the achievements in past decades in manufacturing of micro-components enabled to develop new generations of products with reduced mass and volume as well as with an increasing number of functions integrated in an ever-smaller space. This continuing trend of miniaturization includes an increasing demand for polymeric tubular micro-parts applied for example in medical devices, micro-fluidic and thermal management systems. Recent research in the fabrication of polymeric micro-tube products is therefore dealing with manufacturing techniques for high-volume production, developing new processes such as micro-blow moulding or hot embossing. Similarly, measures for an increased functionalization of polymeric micro-tubes were part of investigations for medical purposes and artificial neural networks were applied to model extrusion processes. The objective of this article is to provide a structured overview about the recent advances in fabricating polymeric micro-tube components with a particular focus on the achievements in innovative shaping techniques.
Die Entwicklungen im Bereich der Fertigung von Mikrobauteilen in den vergangen zwei Jahrzehnte eröffnen heute zahlreichen Industriebereichen neue Möglichkeiten für innovative Produkte mit einer zunehmend höheren Funktionsdichte bei immer kleiner werdendem Bauraum und Gewicht. Dieser anhaltende Trend zur Miniaturisierung ist auch im zunehmenden Bedarf rohrförmiger Mikrobauteile aus Kunststoffen erkennbar, beispielsweise für Anwendungen in der Medizintechnik, der Mikrofluidik oder für Wärmetauschersysteme. Aktuelle Forschungsarbeiten befassen sich daher mit Fertigungsmethoden zur Herstellung rohrförmiger Mikrokomponenten in großen Stückzahlen, wie zum Beispiel dem Mikroblasformen oder dem Heißprägen. Für Anwendungen in der Medizintechnik wurden darüber hinaus verschiedene Maßnahmen zur Schaffung erhöhter Funktionalitäten kunststoffbasierter rohrförmiger Mikrobauteile untersucht. Künstliche neuronale Netze wurden für die Abbildung von Extrusionsprozessen eingesetzt. Ziel des vorliegenden Beitrages ist es, eine strukturierte Übersicht über aktuelle Entwicklungen in der Herstellung rohrförmiger Mikrobauteile aus Kunststoffen zu geben mit einem besonderen Schwerpunkt auf innovative Techniken zur Formgebung.
Słowa kluczowe
Rocznik
Tom
Strony
33--43
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
- Faculty of Automotive Systems and Production, Technische Hochschule Köln
autor
Bibliografia
- [1] N.N.: IVAM Survey 2019, IVAM Microtechnology Network, Dortmund, Germany, 2019;
- [2] Fassi I., Shipley D.: Micro-Manufacturing and Their Applications, 1st ed., Springer: Cham, Switzerland, 2017;
- [3] Qin Y.: Micromanufacturing Engineering and Technology, 2nd ed., Elsevier: Oxford, UK, 2015;
- [4] Koc M., Özel T.: Micro-Manufacturing: Design and Manufacturing of Micro-Products, 1st ed., John Wiley & Sons: Hoboken, NJ, USA, 2011;
- [5] Qin Y., Zhao J., Anyasodor G., Hansen K.S., Calderon I., Konrad K., Hartl C., Arentoft M., Chronakis I.S.: Forming of polymeric tubular micro-components, In Micromanufacturing Engineering and Technology, 2nd ed., Qin Y., Ed., Elsevier: Oxford, UK, 2015, pp. 323-345;
- [6] Jain V.K., Sidpara A., Balasubramaniam R., Lodha G.S., Dhamgaye V.P., Shukla R.: Micromanufacturing: A review-Part I, J. Eng. Manuf., 2014, Vol. 228, pp. 973-994;
- [7] Jain V.K., Dixit U.S., Paul C.P., Kumar A.: Micromanufacturing: A review - Part II, J. Eng. Manuf., 2014, Vol. 228, pp. 995-1014;
- [8] Hartl C.: Review on Advances in Metal Micro-Tube Forming, Metals, 2019, Vol. 9, pp. 1-26;
- [9] Qin Y., Brockett A., Ma Y., Razali A., Zhao J., Harrison C., Pan W., Dai X., Loziak D.: Micro-manufacturing: Research, technology outcomes and development issues, Int. J. Adv. Manuf. Technol., 2010, Vol. 47, pp. 821-837;
- [10] Sahmel O., Siewert S., Arbeiter D., Kreiner C.F., Guthoff R., Schmitz K.-P., Grabow N.: Extrusion as a manufacturing process for polymer micro-tubes for various bio-medical applications, Current Directions in Biomedical Engineering, 2019, Vol. 5, pp. 489-492;
- [11] Ren Z, Huang X., Zhihua Xiong Z.: Numerical Studies for the Effects of Viscoelastic Constitutive Parameters on the Extrudate Swell of Plastic Micro-Tubes, Mater. Sci. Forum, 2018, Vol. 932, pp.19-23;
- [12] Tiana H., Zhaoa D., Wanga M., Jin G., Jin Y.: Study on extrudate swell of polypropylene in double-lumen micro profile extrusion, J. Mater. Process. Technol., 2015, Vol. 225, pp. 357-368;
- [13] Jin G., Jin, Y., Zhao D., Dai, G., Zhang Q.: Cross-section design of multi-lumen extrusion dies: study on the effects of die swell and gas flow rate of the lumen, Microsyst. Technol., 2017, Vol.23, pp. 5093-5104;
- [14] Crawford M.: To Tubing’s Limits, Medical Product Outsourcing, 4-2017, pp. 1-7;
- [15] Jin G.B., Zhao D.-Y., Wang M.-Y., Jin Y.-F., Tian H.-Q., Zhang J.: Study on design and experiments of extrusion die for polypropylene single lumen micro tubes, Microsyst. Technol., 2015, Vol. 21, pp. 2495-2503;
- [16] Mekras N., I Artemakis I.: Using artificial neural networks to model extrusion processes for the manufacturing of polymeric micro-tubes, Mater. Sci. Eng., 2012, Vol. 40, pp. 1-6;
- [17] Han J., Xiong L., Jiang X., Yuan X., Zhao Y., Yang D.: Bio-functional electrospun nanomaterials: From topology design to biological applications, Progress in Polymer Science, 2019, https://doi.org/10.1016/j.progpolymsci.2019.02.006;
- [18] Chronakis I.S.: Micro-and Nano-fibers by Electrospinning Technology: Processing, Properties, and Applications, In Micromanufacturing Engineering and Technology, 2nd ed., Qin Y., Ed., Elsevier: Oxford, UK, 2015, pp. 513-548;
- [19] Halauia R., Zussmanb E., Khalfina R., Semiata R., Cohena Y.: Polymeric microtubes for water filtration by co-axial electrospinning technique, Polym. Adv. Technol., 2017, Vol. 28, pp.570-582;
- [20] Dror Y., Salalha W., Avrahami R., Zussman E., Yarin A.L., Dersch R., Greiner A., Wendorff J.H.: One-Step Production of Polymeric Microtubes by Co-electrospinning, small, 2007, Vol. 3, pp. 1064-1073;
- [21] Li C., Han J., Ahn C.H.: Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring, Biosensors and Bioelectronics, 2007, Vol. 22, pp. 1988-1993;
- [22] Li C., Wu P.-M., Han J., Ahn C.H.: A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter, Biomed. Microdevices, 2008, Vol. 10, pp. 671-679;
- [23] Magdanz V., Guix M., Hebenstreit F., Schmidt O.G.: Dynamic Polymeric Microtubes for the Remote-Controlled Capture, Guidance, and Release of Sperm Cells, Adv. Mater., 2016, Vol. 28, pp. 4084-4089;
- [24] Luchnikov V., lonov L., Stamm M.: Self-Rolled Polymer Tubes: Novel Tools for Microfluidics, Microbiology, and Drug-Delivery Systems, Macromol. Rapid Commun., 2011, Vol. 32, pp. 1943-1952;
- [25] Kumar K., Nandan B., Luchnikov V., Gowd E.B., Stamm M.: Fabrication of Metallic Microtubes Using Self-Rolled Polymer Tubes as Templates, Langmuir,2009, Vol. 25, pp. 7667-7674;
- [26] Blasi L., Todaro M.T., Cingolani R., Passaseo A., De Vittorio M., Gigli G.: Polymeric rolled-up microtubes by using strained semiconductor templates, Microelectronic Engineering, 2011, Vol. 88, pp. 2211-2213;
- [27] Zakharchenko S., Puretskiy N., Stoychev G., Stamm M., Ionov L.: Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes, Soft Matter, 2010, Vol. 6, pp. 2633-2636;
- [28] Wang X., Yu G., Han X., Zhang H., Ren J., Wu X., Qu Y.: Biodegradable and Multifunctional Polymer Micro-Tubes for Targeting Photothermal Therapy, Int. J. Mol. Sci., 2014, Vol. 15, pp. 11730-11741;
- [29] Gao W., Sattayasamitsathit S., Uygun A., Pei A., Ponedal A., Wang J.: Polymer-based tubular microbots: role of composition and preparation, Nanoscale, 2012, Vol. 4, pp. 2447-2453;
- [30] Agcaoili A., Ishihara K., Balela M.D.: Preparation of Polyacrylonitrile-Kapok Hollow Microtubes Decorated with Cu Nanoparticles, MATEC Web Conf., 2015, Vol. 27, pp. 02008-p.1-p.5;
- [31] Anyasodor G., Hartl C.: Investigations into fundamentals and forming system design for micro-tube expansion with pressurized media, Key Eng. Mater., 2014, Vol. 597, pp. 153-158;
- [32] Choudhury N., Debergue P., DiRaddo R., Truckenmueller R., Giselbrecht S.: Micro-blow moulding and micro-thermoforming: simulation and validation, Proceedings of the Polymer Processing Society 24th Annual Meeting, June 15-19, 2008, Salerno, Italy, pp. 1-7;
- [33] Zhao J., Qin Y.: Hot embossing of polypropylene micro-tubes into functional tubular components with controlled inner-pore sizes, MATEC Web Conf., 2018, Vol. 190, pp. 1-6;
- [34] Sancho A., Arribas L., Teixidor D.: Micro-injection Moulding, In Micro-Manufacturing and Their Applications, 1st ed., Fassi I., Shipley D., Ed., Springer: Cham, Switzerland, 2017, pp. 23-66;
- [35] Tosello G.: Micro-injection Molding, In Micromanufacturing Engineering and Technology, 2nd ed., Qin Y., Ed., Elsevier: Oxford, UK, 2015, pp. 201-238;
- [36] Li H., Wang X., Wei Y., Liu T, Gu J., Li Z., Wang M., Zhao D., Qiao A., Liu Y.: Multi-Objective Optimizations of Biodegradable Polymer Stent Structure and Stent Microinjection Molding Process, Polymers,2017, Vol. 9, pp. 1-15;
- [37] Xu Z., Cao D., Zhao W., Song M., Liua J.: Investigation of injection molding of orthogonal fluidic connector for microfluidic devices, AIP ADVANCES, 2017, Vol.7, pp. 025205-1-025205-8;
- [38] Attia U.M., Alcock J.R.: A process chain for integrating microfluidic interconnection elements by micro-overmoulding of thermoplastic elastomers, J. Micromech. Microeng., 2010, Vol.20, pp. 1-8;
- [39] Trotta G., Vázquez R.M., Volpe A., Modica F., Ancona A., Fassi I., Osellame R.: Disposable Optical Stretcher Fabricated by Microinjection Moulding, Micromachines, 2018, Vol. 9, pp. 1-12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bd68829-5439-428d-a982-b8b5948da17f