PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Struktura kompozytów bioresorbowalnych wytworzonych z zastosowaniem generatywnej metody laserowej

Autorzy
Identyfikatory
Warianty tytułu
EN
Bioresorbable composites made using selective laser melting
Języki publikacji
PL
Abstrakty
PL
W pracy omówiono strukturę kompozytów bioresorbowalnych wytworzonych z wykorzystaniem technologii laserowych. Metoda polega na selektywnym topieniu mieszaniny sferoidalnych proszków polimeru i ceramiki, warstwa po warstwie, co w efekcie pozwala uzyskać lity element o zamodelowanym kształcie, gotowy do wszczepienia pacjentowi.
EN
Process of producing implants with laser technology allows to individually adjust them to the patient as well as to the level of damage to his bones. One of the important features of the process, which can be manipulated, it is possible to precisely determine the structure of the implant, having the same effect on its porosity. In the case of bioresorbable implants it is a key issue in the context of determining the time the implant is absorbed by the body. Giving properly function to the implant and meet all of its functions, its porosity must be modeled in a way that the subsequent penetration of the blood and cells in the channels. Previous types of implants could be penetrated by the patient's cells to a limited extent. The new technique can generate channels with a diameter of 0.5 to 1 mm with an accuracy of 100 microns. This method allows the production of parts with complex shapes (eg based on CT images) in one operation. A limited number of operations, the material used and the specifics of the process gives a chance to respond quickly to the needs of individual patients, and this influences progress in the development of implantology.
Rocznik
Strony
134--138
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Instytut Technologii Maszyn i Automatyzacji, Politechnika Wrocławska
Bibliografia
  • 1. Gaasbeek D.A.R., Toonen G.H., van Heerwarden J.R., Buma P.: Mechanism of bone incorporation of β-TCP bone substitute in open wedge tibial osteotomy in patients. “Biomaterials” 2005, 26(33), p. 6713-6719.
  • 2. Gebhardt A.: Rapid prototyping. Munich: Hanser, 2003.
  • 3. Hao L., Dadbakhsh S., Seaman O., Felstead M.: Selective laser melting of a stainless steel and hydroxyapatite composites for load-bearing implant development. “Journal of Materials Processing Technology” 2009, Vol. 209, Iss. 17, p. 5793–5801.
  • 4. Hoeges S., Lindner M., Fischer H., Meiners W., Wissenbach K.: Manufacturing of bone substitute implants using selective laser melting. In: Vander Sloten J., Verdonck P., Nyssen M. and Haueisen J. (Eds), ECIFMBE 2008, IFMBE Proc. Vol. 22, p. 2230-2234.
  • 5. Hollander A.D., Wirtz T., von Walter M., Linker R., Schultheis A., Paar O.: Development of individual three-dimensional bone substitutes using selective laser melting. “European Journal of Trauma” 2003, Vol. 29, No. 4, p. 228-234.
  • 6. Ion J.C.: Laser processing of engineering materials. Oxford: Elsevier, 2005.
  • 7. Kruth J.P., Levy G., Klocke F. and Childs T.H.C.: Consolidation phenomena in laser and powder-bed based layered manufacturing. “CIRP Annals” 2007, Vol.56, p. 730-759.
  • 8. Li J., Zuo Y., Cheng X., Yang W., Wang H., Li Y.: Preparation and characterization of nanohydroxyapatite/polyamide 66 composite GBR membrane with asymmetric porous structure. “ Journal of Materials Science: Materials in Medicine” 2009, Vol. 20, Iss. 5, p. 1031-1038.
  • 9. Mao Y., Dong Y., Lin P, Chu C., Sheng X., Guo C.: Preparation of poly (L-lactic acid) microspheres by droplet-freezing process. “Materials Science and Engineering” C, 2011, Vol. 31, Iss. 1, p. 9–13.
  • 10. Oleksiak K. Opracowanie projektu laserowej drukarki 3D do polimerów. Praca magisterska. Wrocław: Pol. Wrocł., 2012.
  • 11. Pielichowska K., Błażewicz S.: Bioactive polymer/hydroxyapatite (Nano)composites for bone tissue regeneration. “ Biopolymers Advances in Polymer Science” 2010, Vol. 232, p 97-207.
  • 12. Puppi D., Chiellini F., Piras A.M., Chiellini E.: Polymeric materials for bone and cartilage repair. “Progress in Polymer Science” 2010, Vol. 35 (4), p. 403–440.
  • 13. Recularu L., Eschler R., Eschler P.Y., Meyer J.M.: Corrosion behavior of a welded stainless – steel orthopedic implant. “ Biomaterials” 2001, Vol. 22, Iss. 3, p. 269–279.
  • 14. Ren J., Zhao P., Ren T., Gu S., Pan K.: Poly (D,L-Lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. “ Journal of Materials Science: Materials in Medicine” 2008, Vol. 19, Iss. 3, p 1075-1082.
  • 15. Tolochko N. K., Laoui T., Khlopkov Y. V., Mozzharov S. E., Titov V. I., Ignatiev M. B.: Absorptance of powder materials suitable for laser sintering. “Rapid Prototyping Journal” 2000, Vol.6, Iss. 3, p.155-160.
  • 16. Wang M., Yue C.Y., Chua B., Production and evaluation of hydroxyapatite reinforced polysulfone for tissue replacement. “ Journal of Materials Science: Materials in Medicine” 2001, Vol. 12, Iss. 9, p 821-826.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bd0032d-9cdd-43a8-b0e0-84e8c30f823f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.