
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 3 2014

IÄã�Ù��ã®ò� PÙÊ¦Ù�ÃÃ®Ä¦ Ê¥ � HçÃ�ÄÊ®� RÊ�ÊãIÄã�Ù��ã®ò� PÙÊ¦Ù�ÃÃ®Ä¦ Ê¥ � HçÃ�ÄÊ®� RÊ�ÊãIÄã�Ù��ã®ò� PÙÊ¦Ù�ÃÃ®Ä¦ Ê¥ � HçÃ�ÄÊ®� RÊ�ÊãIÄã�Ù��ã®ò� PÙÊ¦Ù�ÃÃ®Ä¦ Ê¥ � HçÃ�ÄÊ®� RÊ�Êã

SubmiĴed: 16th April 2014; accepted: 29th May 2014

Mikołaj Wasielica, Marek Wąsik, Andrzej Kasiński

DOI: 10.14313/JAMRIS_3-2014/21

Abstract:
This paper presents a control system for a humanoid
robot based on human bodymovement tracking. The sys-
tem uses the popular Kinect sensor to capture the mo-
Ɵon of the operator and allows the small, low-cost, and
proprietary robot to mimic full body moƟon in real Ɵme.
Tracking controller is based on opƟmizaƟon-free algo-
rithms and uses a full set of data provided by Kinect SDK,
in order tomakemovements feasible for the considerably
different kinemaƟcs of the humanoid robot compared to
the human body kinemaƟcs. To maintain robot stability
we implemented the balancing algorithmbased on a sim-
ple geometrical model, which adjusts only the configura-
Ɵon of the robot’s feet joints, maintaining an unchanged
imitated posture. Experimental results demonstrate that
the system can successfully allow the robot to mimic cap-
tured human moƟon sequences.

Keywords: bipeds, control of roboƟc systems, humanoid
robots, legged robots, teleoperaƟon

1. IntroducƟon
Programming humanoid robotmovements is a dif-

ϐicult task. They are usually programmedwith numer-
ical optimization techniques or manually, which re-
quires a lot of knowledge and skills about kinemat-
ics and dynamics of the robot. Whereas humanoid
robot movements should be natural and human-like,
human motion capture systems appear to be the pre-
ferred solution. However, differences between human
and robot kinematics and dynamics, as well as high
computational cost cause difϐiculties in the straight-
forward solution of this problem.

In our previous work [13] we presented the small-
size humanoid robot M-bot (Fig. 1) designed from
scratch as an alternative to robots built from commer-
cially available kits [1] [2] [3]. As far as construction
is concerned the main assumption was the low cost
and relatively high number (23) of Degrees of Free-
dom (DOF). In our recent work [12] we also presented
a manual programming method of the robot.

In this paper, we propose a simple, efϐicient and
low-cost control system for our humanoid robot. The
input device is Microsoft Kinect sensor [5], which
is relatively cheap compared to professional motion
capture (MoCap) systems and has an advantage in
that it does not require sophisticated MoCap suits to
wear. Kinect sensor and its included Microsoft Kinect
Software Development Kit (SDK) provide a 3D Carte-
sian position of the joints of the observed person. We

use all available joints simultaneously to provide the
closest possible imitation of motion and static sta-
bility of the robot. Our mimicking strategy is based
on optimization-free solutions and our balance con-
troller uses a simple geometrical model. It should be
noted that servomechanisms inM-bot have signiϐicant
backlash, no feedback, limited resolution and control
rate. Also construction of the robot was not precisely
calibrated. Experimental results demonstrate that the
controller can track humanmotion capture data while
maintaining balance of the robot.

After introducing related work in the next section,
we brieϐly summarize the overviewof the systemcom-
ponents in section 3. Section 4 provides a detailed de-
scription of the imitation strategy while a simple sta-
bility controller is presented in section 5. Experimen-
tal results are summarized in Section6. Thepaper con-
cludes with Section 7.

Fig. 1. The robot (poses obtained from our mimicking
system)

2. Related Work
Most of the available control frameworks for hu-

manoid robots require professional motion capture
systems, precise commercial robots, and sophisticated
algorithms. For example, Yamane et al. [14] developed
a system that allows a real force-controlled humanoid
robot tomaintain balancewhilemimicking a captured
motion sequence. This system employs the model of
a simpliϐied robot dynamics to control the balance, a
controller for joint feedback, and an optimization pro-
cedure yielding joint torques that ensure simultane-
ously balancing and tracking. However, this system

3

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 3 2014

does not allow tracking of motion sequences that in-
clude contact state changes, like stepping. In [15] this
approach is extended, but only on a simulated robot,
by adding a procedure that keeps the center of pres-
sure inside the polygon of support, which varies as the
robot moves its feet.

Themotion-capture-based approaches to control a
humanoid robot mostly use pre-recorded motion se-
quences. Only a few systems described in the liter-
ature can interact with the human operator in real-
time. Such a system, described in [11], uses the Kinect
sensor and the Nao small humanoid. This system im-
plements balance control and self-collision avoidance
by involving an inverse kinematics model and pos-
ture optimization. The captured humanmotion is split
into critical frames and represented by a list of opti-
mized joint angles. The similarity of motion is evalu-
ated by the conϐiguration of the corresponding links
on the actor and imitator in the torso coordinate sys-
tem. This work is most similar to our approach, but
it was demonstrated on a more complicated robot
that, unlike the M-bot, has reliable position feedback
in the joints. Moreover, the solution presented in [11]
requires numerical optimization, while our approach
yields a feasible robot conϐiguration in a single-step,
using only geometric computations, and thus it is com-
putationally efϐicient.

3. System Components
Our control system scheme is presented in Fig. 2.

Input device of the system is Kinect sensor, which ob-
tains a depthmapof the observed scene,where the hu-
man being is located. Microsoft Kinect SDK beta 2 pro-
cesses the cloud of points and returns a Cartesian po-
sition of 20 skeletal joints [6]. This data is an input to
the trajectory forming algorithm, which converts the
3D position of human joints to angular conϐiguration
of the robot’s servomechanisms. Conϐiguration is then
modiϐied to provide static stability maintenance. Fi-
nally corrected information of joints angles is trans-
ferred to the robot.

Fig. 2. Kinect-based programming system overview

3.1. MoƟon Capture System

Kinect is equipped with RGB camera (1280×1024
pixels for 63×50 degrees FOV, 2.9 mm focal length,
2.8μm pixel size), IR camera (1280×1024 pixels for
57×45 degrees FOV, 6.1 mm focal length, 5.2μm pixel
size) [8], and IR pattern projector. Both IR camera
and IR projector are used to triangulate points posi-
tion in space. Minimal depth sensor range is 800 mm

and maximal 4000 mm. However, the Kinect for Win-
dows Hardware can be switched to Near Mode which
provides range of 500 mm to 3000 mm. Resolution of
obtained depth map is 11-bit, which provides 2,048
levels of sensitivity [7]. Highest possible frame rate is
30 fps, which is available for depth and color stream in
640×480 pixels resolution [4].

Fig. 3.MicrosoŌKinect SDKMoƟonCapture process [10]

Microsoft Kinect SDK is able to track users pro-
viding detailed information about twenty joints of the
user’s body in the camera ϐield of view. Fig. 3 shows an
overviewof this process. First, from single input depth
image human silhouettes are extracted (because it
uses depth map it is no longer necessary to wear spe-
cial MoCap suits). Then a per-pixel body part distri-
bution is inferred. Each color indicates the most likely
part labels at each pixel. Finally local modes of each
part distribution are estimated to give conϐidence-
weighted proposal for the 3D location of body joints
[10].

3.2. The Robot

Our robot is a proprietary construction. It was
made of scale model servomechanisms and hand-
bended 1mm aluminium sheet (Fig. 1). The robot
weights 1.8 kg and is 42 cm tall. Total number of DOFs
is 23. It has 7 servos in each leg. Usually a robot leg has
6 DOFs, but we added bended toes to improvewalking
possibilities. Three DOFs are located in each arm, one
in the trunk, and two in the head. Inside the robot is
located custom made printed circuit board equipped
with ATXMega microcontroller, 3-axial accelerometer
and 3-axial gyroscope. All 23 servomechanism are di-
rectly connected to motherboard. We added a blue-
tooth module to enable wireless communication with
the host computer. This link is used to boost computa-
tional capabilities of the microcontroller and to allow
the addition of external sensors like Kinect.

4. MoƟon ImitaƟon Problem
Kinect sensorprovidesMoCapdata in3DCartesian

coordinates form, but our robot’s actuators are angu-
lar position controlled. In this situation, since we op-
erate in two different coordinate systems we have to
deϐine how to understand the adequacy of a human

4

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 3 2014

pose by the robot. We considered scaling the opera-
tors joints position to compare it with the robot’s one,
but we realized that our robot has different propor-
tions to a human and also the operator will not al-
ways be the same person. As a result we would have
to adjust the scale for each joint and for each operator
change, which will not guarantee pose adequacy. We
observed that humans learn new choreography by im-
itating pose angular conϐiguration rather than Carte-
sian position of joints, e.g. children learning some new
poses from adults. Therefore we decided to represent
human posture as rotational joints conϐiguration and
then transfer it directly to the robot’s servomecha-
nisms. Operating in multi-angular space guarantees
the important conϐiguration-based scale invariance.

Fig. 4. KinemaƟc structure of the robot

We also wanted to avoid singular poses while still
achieving accurate pose imitation to avoid computa-
tionally costly iterative calculus. In order to get this
we assumed that the number of human DOFs and rel-
ative orientation of the rotation of their axes are the
same as robot’s (Fig. 4). Distance between DOFs is un-
restricted and depends on human proportions. As ori-
gin of the Coordinate System (CS) we chose the inter-
section of spine and shoulders axes. Our skeleton is
treated as 5 independent kinematic chains (legs, arms
and head). Then we provided structural reduction
of DOFs. Namely, we consider a kinematic chain di-
vided into several sections with maximum three DOFs
each. Knowing the 3D position of 20 human joints
from Kinect we are able to obtain inverse kinemat-
ics (IK) equations for each particular chain section.
These IK equations are simple algebraic calculations
and thanks to this, we avoid much slower numerical
computations. Because the position of each body part
givenbyKinect is used,weobtain exact representation
of human body conϐiguration, avoiding singular poses
at the same time. Moreover this solution is optimiza-
tion free, because the obtained robot’s conϐiguration
is practically close to the operator’s.
4.1. Arms

According to the above assumption we considered
our upper limb as made of two sections. The shoul-
der section-starts in origin of the CS with 2 DOFs and

arm section. We calculated particular sections conϐig-
uration with Eulerian rotation matrices representa-
tion. However the arm of our robot has 3 DOFs, while
a human one has 4 DOFs, excluding the wrist. In this
situation we had to compensate for this disadvantage
to a obtain visually acceptable conϐiguration. The ad-
vantage of that robot construction is that the elbow
can be bended over the straight angle. Therefore we
are able to minimize dead zones (Fig. 5). Also, when
servo reaches angular limit, conϐiguration for this joint
changes with hysteresis.

Fig. 5. ApproximaƟng human arm configuraƟons with
the limited number of DOFs in the robot

4.2. Head and Torso
Microsoft Kinect SDK beta 2 do not provide human

head orientation, therefore we implemented a con-
troller, which directs the robot’s ”eyes” to look on the
operators head. Knowing relative position of the robot
head to the Kinect sensor and relative position of the
operator head, we were able to triangulate conϐigura-
tion of 2 DOFs of the robot’s neck.

Single DOF of the robot torso enables it to tilt. Its
angular position is deϐined as roll angle between ori-
gin of CS and the hip CS of the operator.
4.3. Legs

We divided the leg kinematic chain into two sec-
tions: hip and knee.We do not consider the foot orien-
tation, because information extracted from the Kinect
data is usually highly inaccurate (in section 5 we ex-
plain how to obtain ankle joint conϐiguration). To de-
ϐine hip joint conϐiguration, we took into account hip
to heel vector orientation instead of thigh orientation.
This results from the assumption that representation
of the operator’s leg length is expressed as the pro-
portional distance between hip and heel, which varies
from 0 to 100% of the maximal leg length. Therefore
knee angular position is calculated with the law of
cosines. All of this is necessary to improve the balanc-
ing algorithm of the robot. Since the hip joint has 3
DOFs it is critical to deϐine onemore vector, perpendic-
ular to hip to heel vector, to obtain three Euler angles.
To do this we deϐined a vector, which is a cross prod-
uct of the thigh and calf orientation. We used it, rather
than feet orientation, because Kinect data for the calf
and thigh area is much more accurate.
4.4. ConfiguraƟon CorrecƟon

As result of the algorithm calculationswe obtained
conϐiguration of all joints, a set of 23 elements. Some-
times in this data outliers occur, caused by Kinect
reading errors. To smooth the robot movements we

5

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 3 2014

average the last 6 measurements for each joint an-
gle. Number of samples was manually adjusted (the
greater the number, the less dynamic movement). We
also provided simple self-collision avoidance meth-
ods. The algorithm limits the range of the angle of each
servomechanism, according to the eq. 1:

Θ̂t
i =

 Cimin if Θt
i ≤ Cimin ,

Θt
i if Cimax ≤ Θt

i ≤ Cimin ,
Cimax if Θt

i ≥ Cimax ,
(1)

where Cimin and Cimax are angular limits for ex-
treme position of each servomechanism.
4.5. OperaƟng Modes

Additionally we implemented two operating
modes: a show and face to face. In the ϐirst mode
the robot and the operator are turned in the same
direction i. e. to the audience. In this case conϐigura-
tion of the operator can be directly transferred to the
robot. But in second mode, where the robot faces the
operator, his conϐiguration has to be mirrored. We
change location of conϐiguration in our data set of the
left side of the robot to the right and vice versa. If it is
necessary we change the angle sign.

5. Stability Maintenance
Described in section 4 robot conϐiguration does

not account for the different humanmass distribution
and inertia. Because of Kinects signiϐicant measure-
ment error of human feet position, the obtained an-
kle conϐigurations are encumberedwith errors, which
is essential for pose stabilization. In this situation we
need to implement a separate balance algorithm in the
robot. It is based on the static model and controls ac-
tual COM position relatively to the robot’s supporting
feet. When a subsequent pose indicates loses of the
robot static stability the control system adjusts COM
position by using only the robot feet joints.
5.1. Center of Mass

To maintain stability of the robot, ϐirst we con-
sidered using a stabilizer based on the Zero Moment
Point (ZMP) [9]. Servomechanisms in our robot do not
provide any feedback information, even about angular
position. The robot does not have pressure sensors in
it’s feet too, therefore implementation of ZMPwas not
possible. To maintain the static stability we ϐinally de-
cided to implement a controller based on the position
of the Center of Mass (COM) projection on the ground
plane.

We obtained themass and relative position of COM
of each robot segment from CAD data. We calculated
absolute COM position using conϐiguration data and
the relative COM position of each segment, respec-
tively to the robot Coordinate System located in the
torso. Assuming that the robot consists of N rigid-
body links in three dimensions, the absolute COM po-
sition is given as

COMx,y,z =

∑N
i=1 mi[xi, yi, zi]

′∑N
i=1 mi

, (2)

where mi is a mass and [xi, yi, zi]
′ is a position of

each robot segment.
Because used servomechanisms have signiϐicant

backlash and positioning error of about ±1.5◦, we do
not consider COM as point, but as a ball. We assume
that the ball represents punctual COMwith embedded
measurement uncertainty as its radius. This funda-
mental assumption implicates that to maintain static
stability, projection of the COM to ground plane does
not have to lie in the foot supporting area, but on the
line segment connecting centers of the feet. Therefore
space of existing solutions was reduced from two to
one dimension.
5.2. Simple Stability Model

The main task of our system is to imitate the
operating person accurately, therefore any obtained
robot’s conϐiguration modiϐications are not recom-
mended. Also the operator’s foot orientation readings
are of poor quality especially since the robot’s ankle
joints are essential to balance. Combining these argu-
ments we propose a simple solution.

Position of the robot’s COM is calculated before ex-
ecuting each posture, 50 times per second. To adjust
COM position we use only feet orientation, rest of the
body joints are ϐixed. Changing feet orientation has
negligibly small inϐluence to mass distribution, there-
fore we can assume that the position of the robot’s
COM is constant according to the robot’s CS in current
frame. Thanks to that, the robots pose is same as the
operators. Also this solution is optimization free, be-
cause no iterations are needed to estimate COM posi-
tion for each conϐiguration change.

The only problem to solve is the calculation of ori-
entation of the robots foot according to its CS. To do
thiswepropose a simple geometricalmodel presented
in ϐig. 6. Firstweassumed that the groundonwhich the
robot stands is ϐlat, so the normal vector to the surface
is parallel to gravity vector all over the place. Then we
can introduce vector V⃗ , which has to be parallel to the
normal of the support surface to maintain static sta-
bility. Since the feet are robot’s support surface, with
its centers in Pp and Pl points, the V⃗ should start in
line segment PpPl and end in the COM. Also observing
that Pp and Pl should lie on the same surface, V⃗ has to
be perpendicular to thePpPl. Combining this assump-
tions we obtained equation 3 to calculate V⃗ orienta-
tion.

V⃗ =
−−−→
PLPP × (

−−−−−−→
PLCOM ×−−−→

PLPP) (3)

Knowing V⃗ orientation according to the robot’s CS
we can substitute it into inverse kinematics equations.
Because the ankle joint has two DOFs, only a single
3D vector is needed to deϐine its orientation, and we
can easily calculate its conϐiguration using explicit al-
gebraic transformations.
5.3. Side fall prevenƟon

Introduced ankle strategy guarantees stability
maintenance only when projection of COM to the line
segment will be inside this segment. In other words

6

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 3 2014

Fig. 6. Stability maintenance strategy: schemaƟcs (A)
and visualizaƟon on the robot (B)

we have to detect the possibility of exceeding outer
boundary of the foot by COM and adjust conϐiguration
to prevent against falling to one side. We decided to
detect the possibility of falling bymeasuring the angle
between two vectors (eq. 4):

̸ (x⃗, y⃗) = arccos (x⃗, y⃗)

|x⃗| · |y⃗|
. (4)

For each vectors pair angles are speciϐied in eq. 5:

α = ̸ (
−−−−−−→
PPCOM, V⃗),

β = ̸ (
−−−−−−→
PLCOM, V⃗),

γ = ̸ (
−−−−−−→
PPCOM,

−−−−−−→
PLCOM).

(5)

To ϐind out if next pose is stable we have to solve
eq. 6:

Pose =

 Stable if α+ β = γ ∧ α ̸= 0 ∧ β ̸= 0,
Stability limit if α = 0 ∨ β = 0,
Unstable if α+ β > γ.

(6)
We simply calculatewhether vector V⃗ is inside our

modelled triangle (Fig. 6(A)). If it is inside the pose
will be stable and no adjustments are needed. Conϐig-
uration can be directly transmitted to the robot. If it
is on the stability boundary, conϐiguration also can be
transmitted. In the third case we have to modify exist-
ing conϐiguration to guarantee pose stability. However
doing this we should as little as possible modify pose
to maintain it’s similarity to the operator pose.

Fig. 7 presents scheme of adjusting pose. The aim
is to transform the unstable conϐiguration (A) to a sta-
ble one (D). First (A) we calculate the proper angle by
using eq. 5. This angle informs us about vertical devia-
tion. Rotating our model by this angle (B), we can cal-
culate the intersection point of ground and the edge
of the triangle. Knowing the position of this point and
position of vertex we are able to calculate the distance
between them (C). We can simply shorten the appro-
priate leg, as in amethod of adjusting leg length in sec-
tion 4.3. Finally we obtain a stable pose (D), which can
be transferred to the robot, after updating the foot ori-
entation.

Fig. 7. IllustraƟon of the side fall prevenƟon strategy
(from leŌ to right)

5.4. Single Leg Standing and CorrecƟon from IMU
Our presented balance algorithm is also able to

provide stabilization on a single leg. It requires deϐin-
ing vector V⃗ as V⃗ =

−−−−−−→
PPCOM or V⃗ =

−−−−−−→
PLCOM . Then

the balancing algorithm will be adjusting orientation
of robot’s ankle so that the COM will be always over
center of supporting feet.

By adding the inclination angles obtained from the
IMU to the orientation of vector V⃗ we can also com-
pensate to some degree the ground tilting.

This additional features have not been imple-
mented, but theoretical considerations imply that the
idea is correct.

6. Experimental Results
6.1. Controller ImplementaƟon

We implemented the controlling framework on a
standard PC computer,which is connected to the robot
by bluetooth. Each robot actuator is controlled by the
internal position feedback loop running at 50 Hz for
position control. Therefore our implementation of the
posture controller runs at this rate. Our control system
uses a conϐiguration extracted from Kinect data twice
because the Kinect provides skeletal data at about 25
Hz. Also it should be noted, that information about
each actuator position is not visible for our main con-
troller. This results from the lack of any feedback in-
formation from the low-cost servomechanisms used.

The robot mass distribution is obtained from a
CAD model. Similarly the angular position of gears is
evaluated by eye, so it approximates only conϐigura-
tion based on the appearance of the robot. Also the
support platform is not levelled. All these factors cause
the inconsistency with the real data. To compensate
for this, while the robot is in initial pose, we manually
adjust the foot joints until the robot is able to standup-
right on its own. Thenwe add these constant offsets to
the reference joint angles in order to match the initial
reference robot pose with the actual initial pose.

6.2. Control of the System
The control framework is designed to be user-

friendly. Because the systemwas presentedwith audi-
ence participation, we implemented an operator cho-
sen algorithm. From humans in the Kinect ϐield of
view, the person who raises their hand will take con-
trol of the robot (Fig. 8 A). From this moment the af-
fection is ϐixed on that person.

Controlling the robot utilises the whole operators
body, so it is not possible for him to manage the con-

7

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 3 2014

trol application in a traditional way by using a mouse
or keyboard. Therefore we implemented voice com-
mands in the robots control system. Thus it is possi-
ble to establish a connection to stop or to turn off the
robot. Mainly this mode is used to switch a controlling
person.

6.3. Tracking Human MoƟon Data

In our experiment the operator presents simple
and the hardest poses for the robot involving both
upper-body and legs. Snapshots from the trial1 are
shown in ϐig. 8. Each pose is presented in frontal view,
to minimize occluding of body parts, which result in
Kinect readouts errors. If the error occurs as a signif-
icantly fast joints position step, which is faster than
people are able to perform, the robot trying to follow
such amovement in some cases can fall down, because
of the high value of dynamic forces.

Fig. 8. Snapshots from the experimental validaƟon: tak-
ing the control (A), various postures achieved by the
robot (B,C,D)

Analysing captured video frame by frame we ob-
served insigniϐicant lag when mimicking motion us-
ing Kinect. This lag is mainly caused by the Kinect SDK
calculations time. However, the robot movements stay
as dynamic as the operator. Both feet and hands of
the robot have the same maximum speed, which does
not signiϐicantly affect the robots stability, thanks to
the robust stability controller. This is an original prop-
erty of the robot compared to other solutions [15]
[11]. Sometimeswhen the robot joint reaches its angu-
lar limit, it performs additional correctivemovements,
which are not performed by the operator. Such move-
ments help the robot to avoid singular conϐigurations
and improve robot-human pose similarity limitation.
Finally, the overall motion sequence is very similar to
the reference motion performed by the operator.

7. Conclusion
In this paper we have proposed a straight-forward

method to build a real time full body human imitation
system on the proprietary humanoid robot. First we
suggest to rely on the angular representation of a hu-
man pose as it is independent of human size, uses a
full set of available joints data, and needs no optimiza-
tion. We also propose a straight-forward balance con-
trol strategy based on ankle joints control and have

proved it to be efϐicient. Experimental results demon-
strate that our implementation successfully controls a
humanoid robot so that it tracks human motion cap-
ture data while maintaining the balance.

ACKNOWLEDGEMENTS
This research was funded by the Faculty of Electrical
Engineering, Poznan University of Technology grant,
according to the decision 04/45/DSMK/0126.

Notes
1A supplemental video is available at:

http://lrm.cie.put.poznan.pl/ROBHUM.mp4

AUTHORS
Mikołaj Wasielica∗ – Poznan University of
Technology, Institute of Control and Informa-
tion Engineering, ul. Piotrowo 3A, 60-965 Poz-
nań, e-mail: mikolajwasielica@gmail.com, www:
http://www.cie.put.poznan.pl/.
Marek Wąsik – Poznan University of Tech-
nology, Institute of Control and Informa-
tion Engineering, ul. Piotrowo 3A, 60-965
Poznań, e-mail: wasik.m@gmail.com, www:
http://www.cie.put.poznan.pl/.
Andrzej Kasiński – Poznan University of Tech-
nology, Institute of Control and Information
Engineering, ul. Piotrowo 3A, 60-965 Poznań,
e-mail: Andrzej.Kasinski@put.poznan.pl, www:
http://www.cie.put.poznan.pl/.
∗Corresponding author

REFERENCES
[1] Aldebaran Robotics, 2012 (online product spec-

iϐication, link: www.aldebaran-robotics.com).
[2] I. Ha, Y. Tamura and H. Asama, “Development of

open humanoid platformDARwin-OP”, Advanced
Robotics, vol. 27, 2013, no. 3, pages 223–232,
DOI:10.1080/01691864.2012.754079.

[3] Kondo Kagaku Co., Ltd, 2012 (online product
speciϐication, link: www.kondo-robot.com).

[4] Microsoft, “Kinect for Windows Sensor Compo-
nents and Speciϐications”, 2012 (online docu-
mentation, link:http://msdn.microsoft.com/
en-us/library/jj131033.aspx).

[5] Microsoft, “Kinect for X-BOX 360”, 2010 (online
product speciϐication, link: http://www.xbox.
com/en-US/kinect).

[6] Microsoft Kinect SDK, “Getting Started with the
Kinect forWindows SDKBeta fromMicrosoft Re-
search”, 2011, pages 19–20, (online document,
link: http://www.microsoft.com/en-us/
kinectforwindowsdev/Downloads.aspx).

[7] Microsoft, “Kinect Sensor”, 2012 (online docu-
mentation, link:http://msdn.microsoft.com/
en-us/library/hh438998.aspx).

8

http://lrm.cie.put.poznan.pl/ROBHUM.mp4
 www.aldebaran-robotics.com
www.kondo-robot.com
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://www.xbox.com/en-US/kinect
http://www.xbox.com/en-US/kinect
http://www.microsoft.com/en-us/kinectforwindowsdev/Downloads.aspx
http://www.microsoft.com/en-us/kinectforwindowsdev/Downloads.aspx
http://msdn.microsoft.com/en-us/library/hh438998.aspx
http://msdn.microsoft.com/en-us/library/hh438998.aspx

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 8, N◦ 3 2014

[8] OpenKinect, “Protocol Documentation”, 2012
(online document, link: http://openkinect.
org/wiki/Protocol/_Documentation/
#Control/_Commands;a=summary).

[9] P. Sardain and G. Bessonnet, “Forces acting on a
biped robot. Center of Pressure – Zero Moment
Point”, IEEETrans. Systems,Man, and Cybernetics,
Part A, vol. 34, 2004, no. 5, pages 630–637.

[10] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp,
M. Finocchio, R. Moore, A. Kipman and A.
Blake, “Real-time human pose recognition in
parts from single depth images”, Proc. IEEE
Conf. on Computer Vision and Pattern Recogni-
tion, Providence, USA (2011), pages 1297–1304,
DOI:10.1109/CVPR.2011.5995316.

[11] F. Wang, C. Tang, Y. Ou and Y. Xu, “A real-
time human imitation system”, Proc. 10th World
Congress on Intelligent Control and Automa-
tion, Beijing, China (2012), pages 3692–3697,
DOI:10.1109/WCICA.2012.6359088.

[12] M. Wasielica, M. Wa̧sik, A. Kasiński and P.
Skrzypczyński, “Interactive Programming of a
Mechatronic System: A Small Humanoid Robot
Example”, IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM)
Wollongong, Australia (2013), pages 459–464,
DOI:10.1109/AIM.2013.6584134.

[13] M. Wasielica, M. Wa̧sik and P. Skrzypczyński,
“Design and applications of a miniature anthro-
pomorphic robot”, Pomiary Automatyka Robo-
tyka, vol. 2, 2013, pages 294–299.

[14] K. Yamane, S. Anderson and J. Hodgins, “Con-
trolling humanoid robots with human mo-
tion data: Experimental validation”, Proc.
IEEE/RSJ, Int. Conf. on Humanoid Robots,
Nashville, USA (2010), pages 504–510,
DOI:10.1109/ICHR.2010.5686312.

[15] K. Yamane and J. Hodgins, “Control-aware
mapping of human motion data with step-
ping for humanoid robots”, Proc. IEEE/RSJ
,Int. Conf. on Intelligent Robots and Sys-
tems, Taipei, China (2010), pages 726–733,
DOI:10.1109/IROS.2010.5652781.

9

http://openkinect.org/wiki/Protocol/_Documentation/#Control/_Commands;a=summary
http://openkinect.org/wiki/Protocol/_Documentation/#Control/_Commands;a=summary
http://openkinect.org/wiki/Protocol/_Documentation/#Control/_Commands;a=summary

	Introduction
	Related Work
	System Components
	Motion Capture System
	The Robot

	Motion Imitation Problem
	Arms
	Head and Torso
	Legs
	Configuration Correction
	Operating Modes

	Stability Maintenance
	Center of Mass
	Simple Stability Model
	Side fall prevention
	Single Leg Standing and Correction from IMU

	Experimental Results
	Controller Implementation
	Control of the System
	Tracking Human Motion Data

	Conclusion

