PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Assessment of Rice Mill Waste Utilisation Management in Malaysia Using Integrated Material Flow and Life Cycle Analyses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Empty and partially filled grain (EPFG) from rice milling factories is usually discarded to landfill. Converting EPFG to valuable products could increase the waste value, improve Malaysia’s rice milling waste management, and prevent environmental problems. Utilising the existing and accessible technology in rice mills factories, the optimal waste management practices involving EPFG were investigated. The options were option 1 as biochar, option 2 as compost, and option 3 as bioethanol. Data was obtained from a previous study based on the current Malaysian scenario. A methodology integrating MFA and LCA was applied to observe the environmental performance of these options, which was performed using STAN2 and SimaPro 9.0 software. The best environmental performance was found for the conversion of EPFG to compost (option 2) since less input was used and fewer emissions were released. A total of 3,550 kg CO2 eq. per ton of EPFG used was obtained while avoiding fertiliser products. Therefore, converting EPFG to compost as an easily applied technology can be suggested to rice mill factories to improve their waste management. When deployed in agricultural waste management systems, the integration MFA-LCA model could be referred to as a useful source when implementing policies and industrial uptake.
Rocznik
Strony
222--236
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Agrobiodiversity and Environment Research Centre, Malaysia Agriculture Research and Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia
  • Agrobiodiversity and Environment Research Centre, Malaysia Agriculture Research and Development Institute (MARDI), Persiaran MARDI-UPM, 43400 Serdang, Selangor, Malaysia
  • Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
  • Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia
  • Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Bibliografia
  • 1. Abdul Rahman, M.H., Sadi, T., Ahmad, A.A., Masri, I.N., Mohammad Yusoff, M., Kamaruddin, H., Shakri, N.A., Hamid, M.A.A., Ab. Malek, R. 2020. Inventory and composting of yard waste in Serdang, Selangor, Malaysia. Heliyon, 6(7), e04486. https://doi.org/10.1016/j.heliyon.2020.e04486
  • 2. Abu-Bakar, N.A., Roslan, A.M., Hassan, M.A., Rahman, M.H.A., Ibrahim, K.N., Abd Rahman, M.D., Mohamad, R. 2023. Environmental impact assessment of rice mill waste valorisation to glucose through biorefinery platform. Scientific Reports, 13(1), 1–12. https://doi.org/10.1038/s41598-023-28487-2
  • 3. Abu Bakar, N.A, Hariz, A.R.M., Fariza, M.M.N., Alyani, S.N. 2017. Physico-chemical and microbiological study during conventional composting using different rates of rice straw and cattle manure mixture. Journal of Tropical Agriculture and Food 45(2), 145–154.
  • 4. Abu Bakar, N.A, Muhaimin, A., Ali, M., Hariz, M., Rahman, A., Nadiah, K., Daaniyall, M., Rahman, A., Mohamad, R. 2022. Development of life cycle inventory and greenhouse gas emissions from damaged paddy grain as fermentation feedstock: A case study in Malaysia Intergovernmental Panel on Climate Change. Journal of Cleaner Production, 354, 131722. https://doi.org/10.1016/j. jclepro.2022.131722
  • 5. Agamuthu, P., Dennis, C. Agamuthu, Pariatamby and Victor, Dennis. Policy evolution of solid waste management in Malaysia. In: International Solid Waste Association Congress 2011, 17 Oct 2011, Daegu, Korea.
  • 6. AIM 2020. National Biomass Strategy 2020: New wealth creation for Malaysia’s biomass industry. https://www.cmtevents.com/MediaLibrary/BStgy2013RptAIM.pdf. Retrieved on December 2023.
  • 7. Al-Rumaihi, A., McKay, G., Mackey, H.R., Al-Ansari, T. 2020. Environmental impact assessment of food waste management using two composting techniques. Sustainability, 12(4). https://doi.org/10.3390/su12041595
  • 8. Atan, N.A., Nazari, M.M., Azizan, F.A. 2018. Effect of torrefaction pretreatment on physical and combustion characteristics of biomass composite briquette from rice husk and banana residue. MATEC Web of Conference 150, 06011.
  • 9. Binner, E. 2003. The impact of mechanical–biological pretreatment on the landfill behaviour of solid wastes. In: Langenkamp, H., Marmo, L. (Eds.), Biological Treatment of Biodegradable Waste – Technical Aspects. Workshop Proceedings, Brussels.
  • 10. Brassard, P., Godbout, S., Pelletier, F., Raghavan, V., Palacios, J.H. 2018. Pyrolysis of switchgrass in an auger reactor for biochar production: A greenhouse gas and energy impacts assessment. Biomass and Bioenergy, 116(October 2017), 99–105. https://doi.org/10.1016/j.biombioe.2018.06.007
  • 11. Catalan, E. and Sanchez, A. 2020. Fermentation (SmF) for the recovery of cellulases from coffee husks: A life cycle assessment (LCA). Energies, 13(2685).
  • 12. Cheng, J., Geng, Z., Zheng, J., Qiu, L., Jiao, F. 2022. Characterization of the pyroligneous acids generated from the pyrolysis of four types mulberry branches. Industrial Crops & Products, 183, 114949. https://doi.org/10.1016/j.indcrop.2022.114949
  • 13. Chien Bong, C.P, Lim, L.Y., Ho. W.S., Lim, J.S. Klemes, J.J., Towprayoon, S., Ho, C.S. Lee, C. 2017. A review on the global warming potential of cleaner composting and mitigation strategies (pp. 146: 149–157). https://doi.org/10.1016/j. jclepro.2016.07.066
  • 14. Corona B, Shen L, Reike D, Rosales Carreón J, Worrell E. 2019. Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resources Conservation and Recycling, 151, 104498.
  • 15. Cucurachi, S., Heijungs, R., Blanco, C.F., Steubing, B. 2022. Methods, tools, data, and software Implementation of uncertainty analysis and moment-independent global sensitivity analysis for full-scale life cycle assessment models. 374–391. https://doi.org/10.1111/jiec.13194
  • 16. Diaz, L.P., Gunkel-Grillon, P., Roth, E. 2018. Life cycle analysis for the treatment of organic matter from municipal solid waste: A case study of France. WIT Transactions on Ecology and the Environment, 215, 69–80. https://doi.org/10.2495/EID180071
  • 17. Duque, A., Álvarez, C., Doménech, P., Manzanares, P., Moreno, A.D. 2021. Advanced bioethanol production: From novel raw materials to integrated biorefineries. Processes, 9(2), 1–30. https://doi.org/10.3390/pr9020206
  • 18. Firdaus, R.B.R., Leong Tan, M., Rahmat, S.R., Senevi Gunaratne, M. 2020. Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Social Sciences, 6(1). https://doi.org/10.1080/23311886.2020.1818373
  • 19. Ghani, L.A., Mahmood, N.Z., Ali, N. 2018. The use of MFA and LCA in the agriculture waste management system in Kuala Terengganu. Malaysian Construction Research Journal, 5(3 Special issue), 153–161.
  • 20. Hassan and Sadiq Saba, S.I.I. 2018. Postharvest loss in rice: Causes, stages, estimates and policy implications. Agricultural Research & Technology: Open Access Journal, 15(4), 111–114. https://doi.org/10.19080/artoaj.2018.15.555964
  • 21. How, B.S., Ngan, S.L., Hong, B.H., Lam, H.L., Ng, W.P.Q., Yusup, S., Ghani, W.A.W.A.K., Kansha, Y., Chan, Y.H., Cheah, K.W., Shahbaz, M., Singh, H.K.G., Yusuf, N.R., Shuhaili, A.F.A., Rambli, J. 2019. An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges. Renewable and Sustainable Energy Reviews, 113, 109277. https://doi.org/10.1016/j.rser.2019.109277
  • 22. Hsu, D.D., Inman, D., Heath, G.A., Wolfrum, E.J., Mann, M.K., Aden, A. 2010. Life cycle environmental impacts of selected U.S. Ethanol production and use pathways in 2022. Environmental Science and Technology, 44(13), 5289–5297. https://doi.org/10.1021/es100186h
  • 23. Karunaratne, H. 2011. Removal of pollutants in parboiled paddy waste-water. Master Thesis. University of Moratuwa, Sri Lanka
  • 24. Larnaudie, V., Ferrari, M.D., Lareo, C. 2021. Life cycle assessment of ethanol produced in a biorefinery from liquid hot water pretreated switchgrass. Renewable Energy, 176, 606–616. https://doi.org/10.1016/j.renene.2021.05.094
  • 25. Laner D., Rechberger H. In: Special Types of Life Cycle Assessment. Finkbeiner M., editor. Springer Netherlands; 2016. Material Flow Analysis; pp. 293–332.
  • 26. Lee, K., Chen, W., Sarles, P., Park, Y., Ok, Y.S. 2022. Primer recover energy and materials from agricultural waste via thermochemical conversion. One Earth, 5(11), 1200–1204. https://doi.org/10.1016/j.oneear.2022.10.010
  • 27. Leong, H.Y., Chang, C.K., Khoo, K.S., Chew, K.W., Chia, S.R., Lim, J.W., Chang, J.S., Show, P. L. 2021. Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnology for Biofuels, 14(1), 1–15. https://doi.org/10.1186/s13068-021-01939-5
  • 28. Liu, Y., Lyu, Y., Tian, J., Zhao, J., Ye, N., Zhang, Y., Chen, L. 2021. Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment. Renewable and Sustainable Energy Reviews, 139(April 2020), 110716. https://doi.org/10.1016/j.rser.2021.110716
  • 29. MIGHT. Malaysian Industry-Government Group for High Technology (MiGHT). Malaysian biomass industry action plan 2020: driving SMEs towards sustainable future. Selangor, Malaysia: MiGHT, p. 1–80. Retrieved in May 2023.
  • 30. Mohammadi, A., Cowie, A., Mai, T.L.A., De La Rosa, R.A., Brandão, M., Kristiansen, P., Joseph, S. 2016. Quantifying the greenhouse gas reduction benefits of utilising straw biochar and enriched biochar. Energy Procedia, 97, 254–261. https://doi.org/10.1016/j.egypro.2016.10.069
  • 31. Mohd Yusof, S.J.H. 2020. Development of biorefinery process for the production of bioethanol from oil palm frond. Thesis, Universiti Putra Malaysia.
  • 32. Mohd Yusof, S.J.H., Roslan, A.M., Ibrahim, K.N., Abdullah, S.S.S., Zakaria, M.R., Hassan, M.A., Shirai, Y. 2019. Life cycle assessment for bioethanol production from oil palm frond juice in an oil palm based biorefinery. Sustainability (Switzerland), 11(24). https://doi.org/10.3390/SU11246928
  • 33. Muñoz, E., Curaqueo, G., Cea, M., Vera, L., Navia, R. 2017. Environmental hotspots in the life cycle of a biochar-soil system. Journal of Cleaner Production, 158, 1–7. https://doi.org/10.1016/j.jclepro.2017.04.163
  • 34. Muñoz, I., Flury, K., Jungbluth, N., Rigarlsford, G., Canals, L.M., King, H. 2014. Life cycle assessment of bio-based ethanol produced from different agricultural feedstocks. International Journal of Life Cycle Assessment, 19(1), 109–119. https:// doi.org/10.1007/s11367-013-0613-1
  • 35. Nazari, M.M., San, C.P., Atan, N.A. 2019. Combustion performance of biomass composite briquette from rice husk combustion performance of biomass composite briquette from rice husk and banana residue. International Journal of Advance Science Engineering Information Technology 9(2), 446–455. https://doi.org/10.18517/ijaseit.9.2.2408
  • 36. Pop, G., Baciu, C., Rédey, Á., Frunzeti, N. 2017. Life cycle assessment (LCA) of municipal solid waste management systems in Cluj county, Romania. Environmental Engineering and Management Journal 16(1), 47–57. https://doi.org/10.30638/eemj.2017.006
  • 37. Rathnayake, M., Chaireongsirikul, T., Svangariyaskul, A., Lawtrakul, L., Toochinda, P. 2018. Process simulation based life cycle assessment for bioethanol production from cassava, cane molasses, and rice straw. Journal of Cleaner Production, 190, 2435. https://doi.org/10.1016/j.jclepro.2018.04.152
  • 38. Roberto, Q.V. 2014. Life cycle assessment of municipal solid waste technologies, organic waste, and compost application to crops Roberto Quirós Vargas Doctoral thesis. PhD Thesis. Universitat Autònoma de Barcelona, September.
  • 39. Rosmiza, M.Z., Rosniza., A., Jabil., M., Mazdi., M. 2019. The potential of rice straw in agricultural activities in the MADA region of Kedah, Malaysia. International Journal of Asian Social Science 9(4), https://doi.org/10.18488/journal.1.2019.94.295.303
  • 40. Saheri, S., Mir, M.A., Ezlin, N., Basri, A., Zalina, N., Mahmood, B., Begum, R.A. 2012. Life cycle assessment for solid waste disposal options in Malaysia. Pollution Journal of Environmental Study, 21(5), 1377–1382.
  • 41. Shafie, S.M. 2015. Paddy residue based power generation in malaysia: Environmental assessment using LCA approach. ARPN Journal of Engineering and Applied Sciences, 10(15), 6643–6648.
  • 42. Shafie, S.M., Masjuki, H.H., Mahlia, T.M.I. 2014. Life cycle assessment of rice straw-based power generation in Malaysia. Energy, 70, 401–410. https://doi.org/10.1016/j.energy.2014.04.014
  • 43. Silalertruksa, T., Gheewala, S.H. 2013. A comparative LCA of rice straw utilization for fuels and fertilizer in Thailand. Bioresource Technology, 150, 412419. https://doi.org/10.1016/j.biortech.2013.09.015
  • 44. Smebye, A.B., Sparrevik, M., Schmidt, H.P., Cornelissen, G. 2017. Life-cycle assessment of biochar production systems in tropical rural areas: Comparing flame curtain kilns to other production methods. Biomass and Bioenergy, 101, 35–43. https://doi.org/10.1016/j.biombioe.2017.04.001
  • 45. Thushari, I., Vicheanteab, J., Janjaroen, D. 2020. Material flow analysis and life cycle assessment of solid waste management in urban green areas, Thailand. Sustainable Environment Research, 30(1). https://doi.org/10.1186/s42834-020-00057-5
  • 46. Tosiah S. 2021. The challenges in repurposing food wastes and other residuals for agriculture. FFTC Agricultural Policy Platform. https://ap.fftc.org.tw/article/2785
  • 47. Tursi, A. 2019. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal, 6(2), 962–979. https://doi.org/10.18331/BRJ2019.6.2.3
  • 48. Uihlein, A., Schebek, L. 2009. Environmental impacts of a lignocellulose feedstock biorefinery system: An assessment. Biomass and Bioenergy, 33(5), 793–802. https://doi.org/10.1016/j.biombioe.2008.12.001
  • 49. Usmani, Z., Sharma, M., Awasthi, A.K., Sivakumar, N., Lukk, T., Pecoraro, L., Thakur, V.K., Roberts, D., Newbold, J., Gupta, V.K. 2021. Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresource Technology, 322(October 2020), 124548. https://doi.org/10.1016/j.biortech.2020.124548
  • 50. Wang, L., Littlewood, J., Murphy, R.J. 2013. Environmental sustainability of bioethanol production from wheat straw in the UK. Renewable and Sustainable Energy Reviews 28, 715–725
  • 51. Zakaria., S.M., Idris, A., Chandrasekaram, K., Darji, D., Alias, Y. 2023. Rice husk lignin to vanillin: IonoSolv as a way forward for value-added biomass depolymerization. BioResources, 18(3), 5385–5398. https://doi.org/10.15376/biores.18.3.5385-5398
  • 52. Zhao, Y., Deng, W. 2014. Environmental impacts of different food waste resource technologies and the effects of energy mix. Resource Conservation Recycling 92, 214–221
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0bc962c5-5a1b-4bd0-afac-ffc1b929688d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.